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Abstract

This thesis investigates Cellular Neural Networks (CNNs), especially, their
capabilities for signal processing. A CNN is a time-continuous, nonlinear dy-
namical system which is composed of locally interconnected cells that work
in parallel. Analogue chips based on this structure are presently being develo-
ped for use in applications where sophisticated signal processing at low power
consumption is required.

We organized this thesis into two parts. The first part presents some theo-
retical results on CNNs. The second part presents the solution of an acoustical-
signal classification problem, thereby showing a possible application of CNNs
in hearing aids.

Part I consists of three chapters. In the first, we introduce the basic CNN
structure. Chapter 2 presents a method for the determination of the network
parameters for a certain class of CNNs. Finally, in Chapter 3 we give lower
and upper bounds on the number of different tasks that can be performed by
CNNs with binary input values.

Chapter 4 gives an overview of the contents of Part II. The problem of the
recognition of given sets of acoustical alarm signals is stated, and its solution
with CNNs is briefly discussed. The first section of Chapter 5 deals with the
preprocessing stage needed to transform the signals under consideration into
images in order to provide inputs suitable for the CNN. The phase-preserving
transformation considered there may well be performed by a CNN as well,
as demonstrated in the second section of Chapter 5, which gives the solution
for the realization of arbitrary second-order linear filters with CNNs. Next,
Chapter 6 presents three processing methods on how to generate a characteris-
tic image for every given acoustical alarm signal: different image-processing
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X Abstract

steps and a simple time–to–space mapping are used in every method. The re-
sulting characteristic images are classified by a one-layer perceptron (Chap-
ter 7). Thus, the idea of using CNNs for the classification of acoustical alarm
signals is to transform the problem into one of image classification.

In Chapter 8 we mention the classification skills of healthy people, and list
the results achieved with our system. A discussion of the results can be found
in the last chapter. By comparing the performance of our system to that of other
schemes we can state that, first, CNNs may well be used for the recognition
of acoustical alarm signals in hearing aids, and, second, CNNs are capable of
processing non-stationary signals.

In the appendix we present the tools used to simulate our system. The
flexible and easy–to–use simulator of CNNs runs on a parallel computer and
presently achieves the fastest iteration speed of simulators reported in recent
literature.



Kurzfassung

Die vorliegende Dissertation handelt von zellularen neuronalen Netzwer-
ken, kurz CNN (Cellular Neural Networks), und im speziellen von deren Ein-
satz für die Verarbeitung nichtstationärer Signale. Ein CNN ist ein zeitkonti-
nuierliches, nichtlineares, dynamisches System, das aus parallel arbeitenden
Zellen besteht, welche lokal miteinander verbunden sind, d.h., nur Verknüp-
fungen zwischen benachbarten Zellen aufweisen. Analoge integrierte Schal-
tungen, die auf dieser Struktur basieren, sind weltweit Gegenstand laufender
Forschungsarbeiten. Es wird das Ziel verfolgt, die CNN in Anwendungen zum
Einsatz kommen zu lassen, welche hohe Signalverarbeitungsgeschwindigkei-
ten bei geringer Leistungsaufnahme voraussetzen.

Die Abhandlung ist in zwei Teile gegliedert. Im ersten Teil werden theore-
tische Resultate zu den CNN präsentiert, im zweiten Teil wird diese Netzwerk-
struktur für die Klassifikation akustischer Alarmsignale eingesetzt. Es wird da-
mit gezeigt, dass Hörgeräte ein mögliches Anwendungsgebiet der CNN sind.

Teil I besteht aus drei Kapiteln. Im ersten wird der Aufbau der CNN vor-
gestellt. Kapitel 2 zeigt, wie die Netzwerkparameter für eine spezielle CNN-
Klasse ermittelt werden können. Schliesslich werden in Kapitel 3 untere und
obere Schranken für die Anzahl verschiedener Aufgaben angegeben, die mit
den CNN bei zweiwertigen Eingangsdaten gelöst werden können.

Kapitel 4 gibt eine Übersicht zu Teil II. Das Problem der Erkennung vorge-
gebener Klassen akustischer Alarmsignale wird formuliert und dessen CNN-
Lösung skizziert. Der erste Abschnitt von Kapitel 5 behandelt die Vorverar-
beitung der betrachteten Signale. Diese werden zu Bildern umgewandelt, um
eine für die CNN geeignete Darstellung der Eingangsdaten zu bekommen. Die
verwendete, phasenerhaltende Abbildung kann mit den CNN selbst vorgenom-
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XII Kurzfassung

men werden, wie im zweiten Abschnitt von Kapitel 5 anhand der Realisierung
beliebiger linearer Filter zweiter Ordnung mit einer CNN-kompatiblen Struk-
tur gezeigt wird. Kapitel 6 stellt drei Verarbeitungsmethoden zur Generierung
eines charakteristischen Bildes für jedes gegebene akustische Alarmsignal vor.
Dabei werden verschiedene Bildverarbeitungsschritte und eine einfache Um-
wandlung der Zeitachse in eine örtliche Dimension vorgenommen. Die resul-
tierenden charakteristischen Bilder werden mit einem Einschichtperceptron
klassiert (Kapitel 7). Die CNN werden also dazu verwendet, das Problem der
Erkennung akustischer Alarmsignale auf eine Bildklassifikation zu führen.

In Kapitel 8 wird anhand von Untersuchungen gezeigt, wie gut der nicht
hörgeschädigte Mensch die akustischen Alarmsignale erkennt, und die Erken-
nungsfehlerraten des vorgeschlagenen Systems werden präsentiert. Die Be-
sprechung der Resultate erfolgt im letzten Kapitel. Durch den Vergleich mit
anderen Klassifikationsmethoden kann erstens festgehalten werden, dass sich
die CNN anbieten, die Klassifikation akustischer Alarmsignale in Hörgeräte
zu implementieren. Zweitens lässt der Vergleich der Resultate die Aussage zu,
dass sich die CNN eignen, um nichtstationäre Signale zu verarbeiten.

Im Anhang werden die Simulationsprogramme vorgestellt, die in Zusam-
menhang mit den gemachten Untersuchungen entwickelt wurden. Der Simu-
lator der CNN ist vielseitig und einfach zu bedienen. Er wurde auf einem Par-
allelrechner implementiert und weist zur Zeit die kürzesten Iterationszeiten im
Vergleich zu anderen neulich publizierten CNN-Simulatoren auf.



Resumen

En esta tesis doctoral se investigan las redes neuronales celulares, o CNNs
(Cellular Neural Networks), y especialmente su capacidad para el procesado de
señal. La CNN es un sistema dinámico no lineal en tiempo continuo compuesto
por células que trabajan paralelamente y con conexiones locales, es decir que
toda célula está conectada únicamente con células vecinas. Actualmente se
están desarollando circuitos integrados analógicos basados en esta estructura
para utilizarlos en aplicaciones que requieren un procesado de señal sofisticado
conjuntamente con un consumo mínimo de potencia eléctrica.

La tesis se compone de dos partes. En la primera se presentan resultados
teóricos sobre las CNNs. La segunda parte soluciona un problema de clasifi-
cación de señales acústicas demostrando que las CNNs se pueden utilizar en
aparatos de ayuda para personas con problemas auditivos.

La parte I la forman tres capítulos. En el primero se introduce la estructura
básica de la CNN. El capítulo 2 presenta un método para determinar los pará-
metros de la red teniendo en cuenta una cierta clase de CNNs. Finalmente, en
el capítulo 3, se derivan el límite inferior y superior del número de diferentes
funciones que se pueden realizar con CNNs en el caso de señales de entrada
binarias.

El capítulo 4 presenta una visión general del contenido de la parte II. Se
define el problema de la clasificación de determinadas clases de señales acús-
ticas de alarma, y se presenta brevemente su solución con CNNs. La primera
sección del capítulo 5 trata la etapa de preprocesado necesaria para transformar
en imágenes las señales consideradas, de forma que la CNN sea alimentada
con señales apropiadas para esta red. La transformación utilizada conserva la
información sobre la fase de la señal de entrada, y también se puede realizar
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XIV Resumen

con una CNN, como se demuestra en la segunda sección del capítulo 5 al pre-
sentar la solución de la realización de cualquier filtro lineal de segundo orden
con CNNs. El capítulo 6 muestra tres formas de generar una imagen caracte-
rística para cada señal acústica de alarma considerada: cada método emplea
diferentes pasos de procesado de imagen y una simple transformación de la
dimensión temporal en una espacial. Las imágenes características producidas
se clasifican con un perceptron de una sola capa (capítulo 7). Por consiguiente,
la idea de utilizar las CNNs para la clasificación de señales acústicas de alarma
es la de resolver el problema a través de una clasificación de imágenes.

En el capítulo 8 se incluyen las capacidades de clasificación de personas
con audición normal, y se presentan los resultados obtenidos con el sistema
propuesto por esta tesis. La discusión de los resultados se encuentra en el
último capítulo. A través de la comparación con otros métodos de clasificación
se puede constatar que, primero, las CNNs se prestan para la clasificación
de señales acústicas de alarma y su implementación en aparatos acústicos, y,
segundo, las CNNs son capaces de procesar señales no estacionarias.

En el apéndice se presentan los programas que se desarrollaron con res-
pecto a las investigaciones realizadas en este trabajo. El simulador de CNNs es
muy completo y facil de manejar. Está implementado en un ordenador paralelo
y presenta los tiempos de iteración más cortos entre los simuladores de CNNs
publicados recientemente.
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Part I

Cellular Neural Networks

1



The first part of this thesis gives a short introduction to the concept of
Cellular Neural Networks. Further, a design procedure for a special class of
Cellular Neural Networks is presented, and boundaries for the diversity of the
networks are computed.



Chapter 1

The CNN Structure

A Cellular Neural Network (CNN) is a time-continuous, nonlinear dynam-
ical system which performs a signal-processing task on a multidimensional
input signal. The system dynamics is completely determined by a small set of
network parameters. In most applications the input signal is constant and two-
dimensional, representing an image, and the network parameters are set such
that the CNN converges to a stable state. The CNN is then said to perform an
image-processing task by carrying out a nonlinear mapping of an input image
onto an output image.

3



4 Chapter 1. The CNN Structure

1.1 Introduction

L. O. Chua and L. Yang presented the basic CNN structure in 1988 [1, 2].
The concept of a CNN is similar to that of cellular automata [3] with the main
difference that a CNN, as introduced in [1, 2], is a time-continuous network,
whereas cellular automata are logical operators which operate in discrete time.

A CNN is an analogue nonlinear dynamical system with the following
characteristics:

1 Information is processed in parallel by individual units, the so-called
cells, which are all identical.

2 Due to the local connectivity between the cells, a chip implementation
using analogue techniques can be realized also for CNNs with a large
number (e.g., thousands) of cells.

3 The system dynamics is controlled by a small set of parameters, the
so-called templates.

Most applications of CNNs can be found in image processing, i.e., the
CNN is used to map an input image onto a desired output image. The CNN
is then viewed as a mapping device, and not as a dynamical system: the final
state of the network is considered to be the result for a given input, or for a
given initial state, and the transient behaviour is of no interest. Moreover, one
wishes to perform the mapping as fast as possible.

The convergence time of a CNN depends basically on the technology that
is used to implement it. Normally, the convergence time, i.e., the time that is
needed to perform an image-processing task such as, e.g., edge extraction, is in
the range of microseconds [4,5]. Also, due to the inherent analogue structure,
all the processing may be performed with low power consumption [6], in spite
of the high operating speed.

Conventional neural networks [7] can be viewed as rudimentary models
of biological nerve systems. One feature of a biological nerve system is the
high connectivity between the neurons, i.e., the individual nerve cells. Thus,
in a neural network the “artificial” neurons are also largely interconnected in
order to correspond best to the biological system. However, the placement and
routing of many long wires in integration implementations on silicon is a dif-
ficult problem. CNNs avoid it by connecting only adjacent cells to each other.



1.2. The One-Layer CNN 5

Of course, a CNN suffers some restrictions compared to its fully-connected
counterpart, the Hopfield network [8], but we will see that it still can be used
to perform many tasks.

A few parameters control the behaviour of the CNN. However, in the gen-
eral case, and for time-continuous CNNs,1 there is no efficient learning al-
gorithm or analytical method to compute the parameter values in order to allow
the CNN to perform a desired processing task. A template library for a large
variety of image processing tasks is available [10, 11], but for new situations,
especially in the case where the network parameters influence the dynamics
through a nonlinearity (nonlinear templates) [12], experience and intuition are
required.2

As yet, only very few programmable CNN chips are available. Program-
mability means that for each processing task required, appropriate parameter
values (templates) can be changed from outside the chip. The last point is also
a topic of CNN research [5]. In the referenced work, a single programmable
CNN cell has successfully been implemented on a modular chip. However, for
a large number of cells, CNNs still have to be simulated on a digital computer
(see Appendix A.2).

In the last years, the definition of the CNN given in [1] has been expanded
to the so-called CNN universal machine [13, 14], an analogue, multipurpose
computer. We present in the following sections the basic structure given in
the original publication. The additional definitions used in the CNN universal
machine will be discussed only in as much as they are introduced in this thesis.

1.2 The One-Layer CNN

Let us describe the CNN structure in its original form for a one-layer
CNN.3 A CNN consists of an M×N array of identical cells C(·, ·), where
C(i, j) represents the cell at position (i, j), i.e., at the i th row and j th column,
with 1≤ i≤M and 1≤ j ≤ N. The neighbourhood Nr(i, j) of cell C(i, j) with

1Discrete-time CNNs have also been defined [9], but they do not add any new concepts to the
cellular automata mentioned above.

2In Chapter 2, an exact design of the template values is developed for the special case of
so-called reciprocal CNNs with binary input values.

3For a detailed description of multilayer CNNs, see [1]. We do not consider them here, because
they are hardly implementable at present.



6 Chapter 1. The CNN Structure

radius r is defined as

Nr(i, j) = {C(k, l)| max{|k− i|, |l− j|} ≤ r, 1≤ k ≤M; 1≤ l ≤ N} (1.1)

i.e., all cells at a distance r from cell C(i, j) belong to the neighbourhood
Nr(i, j), as well as cell C(i, j) itself.4 All cells in the network have the same
neighbourhood radius r. Figure 1.1 shows the M×N array of a one-layer CNN

Figure 1.1: M×N CNN with neighbourhood N1(i, j)

with a neighbourhood radius r = 1. Usually, CNNs use a neighbourhood radius
r = 1. This property, known as local connectivity, makes CNNs suitable for
integration implementations because then the placement and routing of wires
is restricted to the neighbourhood of the cell.

1.3 Cell Dynamics

As mentioned above, all cells in the CNN are identical. Figure 1.2 shows
the cell circuit for cell C(i, j). The voltages ui j, xi j and yi j are the input, state,
and output of cell C(i, j), respectively. I is the output current of a constant
current source. I

yi j
n and I

ui j
n are the output currents of two sets of linear voltage-

controlled current sources (VCCSs). We will discuss their meaning below. The
voltage-controlled voltage source (VCVS) at the output of the cell is nonlinear,
and is driven by xi j. Its characteristic is shown in Figure 1.3. Equation (1.2)
defines the piecewise-linear function mathematically.

yi j(t) =
1
2

(|xi j(t) + 1|− |xi j(t)−1|) (1.2)

4Cells at the borders of the M×N array, i.e., cells C(i, j) ∈ {C(k, l)|1 ≤ k ≤ r ∨ 1 ≤ l ≤
r ∨ M−r < k≤M ∨ N−r < l ≤N }, have “degenerated” neighbourhoods with fewer members.
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Figure 1.2: Cell circuit of cell C(i, j)

Figure 1.3: Characteristic of the nonlinear VCVS at the output of cell C(i, j)

Applying Kirchhoff’s laws to the cell circuit5 we get the nonlinear differ-
ential equation (1.3), which, together with equation (1.2), defines the dynamics
for C(i, j).6

C
dxi j(t)

dt
=− 1

R
xi j(t) +

(2r+1)2

∑
n=1

I
yi j
n +

(2r+1)2

∑
n=1

I
ui j
n + I (1.3)

Because 1≤ i≤M and 1≤ j≤N, and due to the property of identical cells, the
dynamics of the CNN is completely described by M ·N nonlinear differential
equations of the form (1.3) and M ·N equations of the form (1.2).

The terms I
yi j
n and I

ui j
n correspond to the influence of the cells in the neigh-

5The current through capacitance C equals the sum of all current sources minus the current
through resistance R.

6(1.3) is nonlinear because ẋi j depends nonlinearly on xi j through the VCVS at the output of
the cell.
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bourhood Nr(i, j) on C(i, j). The outputs of the cells within Nr(i, j) influence
xi j through the set I

yi j
n , and the inputs of the cells within Nr(i, j) influence xi j

through the set I
ui j
n . The dependencies are linear, i.e., the output currents I

yi j
n

and I
ui j
n depend linearly on the driving voltages of the VCCSs. Figure 1.4

illustrates these relations for r = 1 and I
yi j
n . The coefficients a1, . . . ,a9

7 are ar-

Figure 1.4: I
yi j
n , 1≤ n≤ (2r + 1)2, are the outputs of the VCCSs controlled by

the output voltages ykl within Nr(i, j). (r = 1)

ranged into the so-called feedback or A template (left part of Figure 1.4). It is
space invariant, i.e., the output voltages ykl within Nr(i, j) are multiplied by the
same coefficients a1, . . . ,a9 independently of the absolute position (i, j).8 Ana-
logously, the input voltages ukl of the cells in the neighbourhood of C(i, j) are
weighted by the control or B template with elements b1, . . . ,b9 (see Table 1.1).

A B
a1 a2 a3
a4 a5 a6
a7 a8 a9

b1 b2 b3
b4 b5 b6
b7 b8 b9

I = c

Table 1.1: Templates of a CNN with neighbourhood radius r = 1

7From now on we will assume r = 1.
8Actually, one can define the template as space variant [1], but then the useful property of a

cloning template which simplifies chip integration gets lost.
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Equation (1.4) shows how I
yi j
n and I

ui j
n depend on ykl and ukl , respectively.

Setting r = 1 in (1.3), we obtain

C
dxi j(t)

dt
= − 1

R
xi j(t)

+a1 yi−1 j−1 + a2 yi−1 j + a3 yi−1 j+1

+a4 yi j−1 + a5 yi j + · · ·+ a9 yi+1 j+1

+b1 ui−1 j−1 + b2 ui−1 j + b3 ui−1 j+1

+b4 ui j−1 + b5 ui j + · · ·+ b9 ui+1 j+1

+ I (1.4)

1.4 Analysis of a Linear Template

We now analyse the dynamical behaviour of cell C(i, j) when a CNN with
the template given in Table 1.2 is used.9

A B
0 0 0
0 a5 0
0 0 0

b b b
b b5 b
b b b

I

Table 1.2: A linear template with four parameters, where we assume that
a5 > 1. The initial state of the CNN is to be set equal to the input image.

The cell dynamics is described by the differential equation (1.5) (see the
differential equation (1.4)).10

ẋi j =−xi j + a5yi j + Ui j + b5ui j + I (1.5)

where

Ui j = b
(
ui−1 j−1 + ui−1 j + ui−1 j+1 + ui j−1 + ui j+1 + ui+1 j−1 + ui+1 j + ui+1 j+1

)
(1.6)

9Here, the notion template stands for all network parameters, i.e., for templates A and B, and
the constant current source I.

10Without loss of generality, we treat the normalized case, i.e., C = R = 1.
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Ui j denotes the contribution of the inputs of the off-center cells. The relation
between yi j and xi j, i.e., the nonlinearity at the output of the cell, is given in
(1.2) on page 6 (see also Figure 1.3). The inputs are assumed to have values
normalized between ±1, i.e., |ui j| ≤ 1, ∀ i, j.

To compute the solution of (1.5), we can exploit the property that (1.2)
is piecewise linear. Thus, (1.5) can be split into the three portions given in
(1.7).11

ẋ = (a5−1)x + C , for |x| ≤ 1 (1.7a)

ẋ = −x + C + a5 , for 1≤ x (1.7b)

ẋ = −x + C − a5 , for x≤−1 (1.7c)

where
C = U + b5u + I (1.8)

The solutions of the linear differential equations given in (1.7a) to (1.7c)
with the corresponding initial conditions (1.9), are (1.10a), (1.10b) and (1.10c),
respectively.

x(0) = u , for |x| ≤ 1 (1.9a)

x(0) = 1 , for 1≤ x (1.9b)

x(0) = −1 , for x≤−1 (1.9c)

x =
(

( C + a5 · u − u ) e(a5−1)t − C
)
/(a5−1) , for |x| ≤ 1 (1.10a)

x = (−C − a5 + 1 ) e−t + C + a5 , for 1≤ x (1.10b)

x = (−C + a5 − 1 ) e−t + C − a5 , for x≤−1 (1.10c)

We would like to know under what conditions the state x of the cell goes
to 1 for (1.10a). It can be easily shown that this occurs for the case of (1.11).12

(a5−1)u + C > 0 (1.11)
11For convenience, we drop the indices i and j since we know that we are dealing with one cell.
12The sign of the exponential function determines if the derivative of x is positive or negative.
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Thus, the state x tends to leave the region |x| ≤ 1 at 1 only if condition (1.11)
is satisfied. Alternatively, x tends to −1 only in the case of (1.12).

(a5−1)u + C < 0 (1.12)

Interesting behaviour can be observed in the case when (a5−1)u + C = 0:
from the solution (1.10a) of the differential equation (1.7a) we see that the
state of the cell remains at its initial condition, i.e., x = u, for ∀ t ≥ 0.

Once the state leaves the region |x| ≤ 1 at 1 or −1 because the corres-
ponding inequality (1.11) or (1.12) is satisfied, the dynamics of the cell is de-
termined by the linear differential equations in (1.7b) and (1.7c), respectively.
From their solutions, one can see that the state does not fall back into the re-
gion |x|< 1: the factors of the exponential functions in (1.10b) and (1.10c)
have the right sign, i.e., for 1≤ x the sign is not positive, and for x≤−1 it is
not negative. This can be proven from the steady-state value x(t→ ∞) = x∞ of
the cell for 1≤ x and x≤−1:13

x∞ = C + a5 ≥ 1 (1.13a)

x∞ = C − a5 ≤−1 (1.13b)

The inequalities in (1.13a) and (1.13b) are always satisfied for (1.11) and
(1.12), respectively.14

In summary, the sign of (a5 − 1)u + C determines the output value
y(t→ ∞) = y∞ of the cell.15 Taking (1.8) into consideration, we can state the
following behaviour for the cell:

U >− (a5−1 + b5)u− I =⇒ y∞ = 1 (1.14a)

U <− (a5−1 + b5)u− I =⇒ y∞ =−1 (1.14b)

13To compute the steady-state values, set t→ ∞ in (1.10b) and (1.10c), respectively.
14To prove the first case, rewrite the inequality in (1.13a) as C

(a5−1) ≥ −1, and then use (1.11)
and the assumption |u| ≤ 1.

15In the case of (a5−1)u + C = 0, y∞ = x(0) = u.
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1.5 Global Dynamics

Assuming space invariance of the templates A and B, the dynamics of
a one-layer M×N CNN with a neighbourhood of radius r = 1 is determ-
ined by nineteen parameters independently of the number of cells: a1, . . . ,a9,
b1, . . . ,b9, and I (which is supposed to be equal for all cells). The question that
now arises is how these parameters have to be set in order to achieve a desired
dynamic behaviour. Normally, and this means for CNN applications in image
processing, the transient behaviour is of no interest, i.e., it is not important
how the CNN reaches a desired stable state. The parameters are set such that
all output voltages yi j saturate either to −1 or +1 (see Figure 1.3) for t→∞.16

Thus, the parameters are chosen such that they determine a certain mapping
of an input image onto its corresponding output image. By contrast, we will
see in Section 5.2, that in the case where the CNN is operated as a linear filter,
it remains in a transient (unsettled) state, and the templates have to determine
the CNN dynamics such that the transient behaviour of the CNN corresponds
to that of a filter biquad.

1.6 Example

We will give a simple example of how the CNN is used to perform an
image-processing task: edge extraction .17 The normalized input and output
values ui j and yi j, respectively, are coded as grey-scale values, i.e., −1 ≤
ui j,yi j ≤ 1, where −1 corresponds to white and 1 to black. Every image pixel
is attached to a cell, i.e., there are as many cells as image pixels, where the input
image is stored in ui j,1≤ i≤M, 1≤ j ≤ N, and the desired output image —
in our example the edges of the input image — is expected to appear at yi j,
1≤ i≤M, 1≤ j ≤ N after the CNN has converged.18 Figure 1.5 illustrates
this example for a 16×16 image. In fact, we will show below (see also [11])
that with the templates given in Table 1.3 the edges of a black and white image
are correctly extracted independently of the initial state xi j(0),1≤ i≤M, 1≤
j ≤ N, and the number of cells.

16Positive feedback (a5 > 1) and a symmetric A template (a1 = a9,a2 = a8,a3 = a7,a4 = a6, see
Figure 1.4) are sufficient conditions to guarantee convergence [1, 15]. A CNN with symmetric A
template is called a reciprocal CNN.

17For the definition of edge extraction see page 21.
18Convergence time in a CNN chip is in the range of microseconds independently of M and

N [4, 5]. Propagation-type applications (see Section 2.5) may take longer.
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Figure 1.5: Input image and desired output image for edge extraction
(M = N = 16)

A B
0 0 0
0 1 + q/4 0
0 0 0

0 −q 0
−q 4q −q
0 −q 0

I =−q/2, q > 0

Table 1.3: Templates for edge extraction. Note that the solution depends on
a parameter q. (These template values are valid for the normalized nonlinear
differential equation with C = R = 1.)

1.6.1 Derivation of parametric template values for edge ex-
traction

For the situation in Table 1.3, the corresponding normalized19 differential
equation of cell C(i, j) within the range |xi j| ≤ 1 is the following (see (1.3) and
Table 1.1):

dxi j

dt
= (a5−1)xi j + d (1.15)

where d is a constant which depends on the input values around cell C(i, j).

19R = C = 1
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Because of symmetry, we can set all the off-center elements of template B
to the same value b2. Then, for the input situation

around cells C(i, j), 1 < i < M, 1 < j < N, the constant d = 4b2 + b5 + c,20 and
for cells C(i, j), i = M, 1 < j < N, the following input situation

leads to d = 3b2 + b5 + c.21 The corresponding outputs for these two input situ-
ations must be−1 and 1, respectively, because, in the first situation, the center
cell belongs to the inner part of the figure and does not form part of the edge,
and, in the second situation, the middle cell of the second row, i.e., cell C(i, j),
is at the lower boundary of the CNN array, and therefore, it cannot belong to
the inner part of a figure. Thus, for b5 =−4b2, the following conditions can
be derived from equation (1.15) for both input situations:22

dxi j

dt
= (a5−1)xi j + c < 0 (1.16a)

dxi j

dt
= (a5−1)xi j−b2 + c > 0 (1.16b)

Setting a5 = 1−b2/4 and c = b2/2 we get the following inequalities from
(1.16a) and (1.16b):

−b2/4 xi j + b2/2 < 0 (1.17a)

−b2/4 xi j−b2/2 > 0 (1.17b)

20The parameters b1, b3, b7 and b9 are supposed to be zero, and I = c, see Table 1.3.
21It can be shown that the discussion of these two input situations is sufficient to bound the

parameter values.
22For negative and positive derivatives of xi j , the state xi j , and therefore also the output of the

cell, tend to −1 and 1, respectively.



1.6. Example 15

Inequalities (1.17a) and (1.17b) are always fulfilled for |xi j| ≤ 1 and b2 < 0.

Now, we have to consider the case were |xi j| ≥ 1. The differential equa-
tions for both input situations around cell C(i, j) are the following:23

dxi j

dt
= −xi j± (1−b2/4) + b2/2 (1.18a)

dxi j

dt
= −xi j± (1−b2/4)−b2/2 (1.18b)

For (1.18a) we have to ask for the steady state xi j(t→ ∞) to be ≤ −1 (first
input situation), for (1.18b) the steady state has to be ≥ 1 (black output value
for the second input situation). First, we analyse (1.18a):

dxi j

dt
= −xi j + 1 + b2/4, for xi j ≥ 1 (1.19a)

dxi j

dt
= −xi j−1 + 3/4 b2, for xi j ≤−1 (1.19b)

The expression (1.19a) is always < 0 for b2 < 0, i.e., the transient moves in the
right direction towards the linear part of the piecewise-linear function. (1.19b)
is also < 0 for b2 < 0 and −1 + 3/4 b2 < xi j ≤ −1. At xi j = −1 + 3/4 b2
(final state) the derivative dxi j/dt = 0, and for xi j < −1 + 3/4 b2 and, again,
b2 < 0, the derivative dxi j/dt is positive and pushes the value of xi j towards
xi j =−1 + 3/4 b2.

The discussion of (1.18b) can proceed in a similar way:

dxi j

dt
= −xi j + 1−3/4 b2, for xi j ≥ 1 (1.20a)

dxi j

dt
= −xi j−1−b2/4, for xi j ≤−1 (1.20b)

The expression (1.20a) is > 0 for b2 < 0 and 1≤ xi j < 1−3/4 b2. It is = 0 for
xi j = 1−3/4 b2 (final state), and for b2 < 0 and 1−3/4 b2 < xi j it is negative
pushing the value of xi j towards xi j = 1− 3/4 b2. (1.20b) is always > 0 for
b2 < 0.

Setting q =−b2 we get the result of Table 1.3.

23The sign of the expression in brackets is positive for xi j ≥ 1, and negative for xi j ≤−1.
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1.7 Summary

A CNN is a time-continuous, nonlinear dynamical system. It consists of
an array of identical cells which are locally connected, i.e., there are no direct
links between distant cells. The way a given cell is influenced by its neigh-
bouring cells is controlled by the network parameters. They are the same for
all cells (cloning templates).

The cells of a CNN are all simultaneously activated from and by an input
signal array (i.e., an image); the processing therefore takes place in all cells
simultaneously, i.e., in parallel. Because each cell is identical, the dynamics
of the CNN is determined by the dynamics of an individual cell and its neigh-
bours. This goes for the state of convergence. Thus, by and large, both the
analysis of the dynamics of a CNN, and the design itself, can be narrowed
down to the dynamics and design of an individual cell and its neighbours.
The resulting simplicity with regard to insight, predictability, and amenability
to analysis, as compared to, say, a perceptron type artificial neural network
(ANN) is considerable. More important still, this simplicity also carries over
into the physical realizability, in particular in VLSI form, of a CNN.

CNNs are normally used to perform image-processing tasks. The templates
are set such that a given image is mapped onto a desired output image. Every
image pixel is processed by a cell. The analysis of the behaviour of a CNN
cell for given template values can easily be performed, because the nonlinear
function at the output of the cell is piecewise linear. The synthesis of the
templates for a given task is a more difficult problem. We showed how a
parametric solution for the simple edge-extraction problem was determined. A
design method which bounds all possible solutions is given in the next chapter.

Due to the local connectivity, CNNs with a large number of cells can be
implemented on analogue chips, although most present realizations have fixed
template values, i.e., the CNN chips are not programmable. Their convergence
time is in the range of microseconds which means that the potential processing
power of large programmable CNN chips is high.



Chapter 2

Exact Design of Reciprocal
CNNs with Binary Inputs

Based on two classes of equilibrium equations, a design method for recip-
rocal CNNs with binary inputs is presented. The local rules defining the task
to be accomplished by the network are directly mapped into a set of linear
inequalities that bound the solution space of the network parameters for the
given problem. All points in the solution space guarantee the correct opera-
tion of the network. A solution can be computed by the relaxation method for
solving sets of linear inequalities.

17
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2.1 Obtaining the Network Parameters

A CNN performs a nonlinear mapping of an input signal onto an out-
put (see previous chapter). The mapping is completely defined by the space-
invariant network parameters of the CNN. Each application such as, e.g. edge
extraction or shadowing, needs its own parameter values to process the input to
the desired output. Locally connected CNNs with space-invariant parameters
are able to carry out tasks which can completely be described by local rules
involving only neighbouring cells.

Several design methods for synthesizing CNNs have been proposed. In
[16] a training rule was presented to determine the weights of the network
from input image patterns and desired output image patterns. By learning
from examples, it is assumed that, after training, the network correctly pro-
cesses inputs which have never been shown before. Unfortunately, however,
the proposed design method does not guarantee the desired outputs for a given
input learning set.

An analytic method for designing simple CNNs has also been published
[17]. It uses rules that explicitly describe the task to be accomplished by the
network. These rules establish a set of inequalities that must be satisfied by the
network parameters. A solution of this set of inequalities guarantees correct
operation of the network. Nevertheless, it may be difficult to construct such
a set of inequalities for a given task, and for some cases the method is too
restrictive, resulting in an empty solution space.

The design method proposed in this thesis maps the rules that define the ap-
plication directly into a set of linear inequalities using two classes of equilib-
rium equations: The first class contains desired equilibrium states, the second
contains forbidden ones. Any point in the solution space bounded by this set
of linear inequalities guarantees correct operation of the network for a given
task. The parameter values can be computed by the relaxation method for the
solution of sets of linear inequalities [16]. The design method can be applied
to local-type, as well as to propagation-type applications, such as shadowing
(see Section 2.5).
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2.2 Desired and Forbidden Equilibrium States

The first-order nonlinear differential equations defining the dynamics of
a reciprocal CNN with neighbourhood N1(i, j) (radius equal to 1), and with
binary input values can be written as follows:1

dxi j

dt
+ xi j = yT

i ja + uT
i jb + c (2.1a)

= γγγ
T
i jΘΘΘ

1≤ i≤ M , 1≤ j ≤ N

where

γγγ
T
i j =

[
yT

i j uT
i j 1
]

(2.1b)

=
[
γ

i j
1 γ

i j
2 · · · γ

i j
19

]
ΘΘΘ

T =
[
aT bT c

]
(2.1c)

= [ a1 a2 · · · a9 b1 b2 · · · b9 c ]

yi j(t) =
1
2

(|xi j(t) + 1|− |xi j(t)−1|) (2.1d)

(piecewise-linear function)

The CNN is subjected to the following restrictions:

|ui j| = 1 , ∀ i, j (2.1e)

(binary input)

a1 = a9
a3 = a7

,
,

a2 = a8
a4 = a6

(2.1f)

(symmetry condition)

a5 > 1 (2.1g)

(parameter assumption)

1Equation (2.1a) is the normalized version of equation (1.3) or, equivalently, equation (1.4),
i.e., R = C = 1, and I = c (where c stands for a constant).
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Equation (2.1e) restricts the input to assume binary values, (2.1f) is the sym-
metry condition for reciprocal CNNs, and (2.1g) forces positive feedback.
Table 2.1 illustrates the correspondence between vector a and the space-
invariant cloning template A.

a1 a2 a3
a4 a5 a6
a7 a8 a9

Table 2.1: Component correspondence for vector a and template A (see also
Table 1.1 on page 8)

The output values yi j of the M×N CNN converge to±1 for t→∞ because
of the restriction to reciprocal CNNs ((2.1f) — symmetry condition), para-
meter assumption (2.1g) and the piecewise-linear characteristic (2.1d) of the
nonlinear function [1]. This means that each vector component γ

i j
m, 1≤ m≤ 9,

converges to ±1 for t→ ∞. On the other hand, because of the binary in-
put condition (2.1e), |γi j

m| = 1 results for 10 ≤ m ≤ 18 and t ≥ 0. Thus,
γγγi j(t→ ∞) = γγγ∞

i j ∈ {−1, 1}19 contains binary components ±1 which corres-
pond to output and input values in the neighbourhood N1(i, j) of cell C(i, j).2

Let Γ be the set of all N possible vectors γγγ∞
i , i = 1, 2, · · · ,N , with different

component values. Next let Γd and Γ f be disjoint subsets of Γ containing
those desired and forbidden vectors γγγ∞

d and γγγ∞
f , whose components correspond

to input/output combinations which are prescribed by, respectively should not
appear in, a specific application, i.e., a specific mapping function F

F : {−1, 1}M×N −→ {−1, 1}M×N (2.2)

Then for all γγγ∞
i ∈ Γd , i.e., for vectors γγγ∞

d , the following inequalities formulate
the conditions that the parameter, or, template vector ΘΘΘ must satisfy to enable
the CNN to settle to a desired output state:

γγγ
T
d ΘΘΘ ≥ 1, for γ

d
5 = 1 (2.3a)

γγγ
T
d ΘΘΘ ≤ −1, for γ

d
5 =−1 (2.3b)

For clarity, the shorter notation γγγT
d has been used instead of (γγγ∞

d )T . 3

2The last component of vector γγγ∞
i j is always equal to unity due to γ

i j
19 = 1 (see (2.1b)), and is

not related to input or output values.
3Inequalities (2.3) result from equations (2.1a) and (2.1d), and from the fact that dxi

dt = 0 and
yi =±1 for t→ ∞ [1].
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On the other hand, vectors γγγ∞
f belonging to the set Γ f of forbidden combin-

ations define the following inequalities that prevent the transient of the CNN
from converging to an undesired output state for a given input:

γγγ
T
f ΘΘΘ < 1, for γ

f
5 = 1 (2.4a)

γγγ
T
f ΘΘΘ > −1, for γ

f
5 =−1 (2.4b)

Here γγγT
f stands for (γγγ∞

f )T . With inequalities (2.4) and for a fixed template
vector ΘΘΘ, any state variable xi that produces an undesired output yi = ±1 is
pushed back from the outer parts of the piecewise-linear function into the linear
region |xi|< 1 in order to let the CNN search for another equilibrium state. If
the resulting vector γγγi of this new equilibrium state also belongs to Γ f then the
state variable is pushed back again until a desired equilibrium state is reached.
Inequalities (2.3) assure that such an equilibrium state exists.

In summary, inequalities (2.3) and (2.4) together with (2.1g) and symmetry
condition (2.1f) bound the solution space of template vector ΘΘΘ. The correct
operation of the CNN for any point within the solution space is guaranteed by
this procedure. The elements of Γd and Γ f can be directly derived from the
local rules which define F , as demonstrated by the next examples.

2.3 Example 1: Edge Extraction
The task of extracting the edge of a figure can be completely described

by local rules which only involve cells C(k, l) belonging to the corresponding
neighbourhood N1(i, j). This is essential because applications which need the
direct influence of a cell C(k, l) 6∈ N1(i, j) on C(i, j) cannot be realized with
the common definition (2.1) of a CNN, because there is no direct connection
between cells outside the neighbourhood and C(i, j). Tasks which are defined
by local rules have the advantage that the correct operation of the network does
not depend on its size, i.e., on the values of constants M and N. The rules for
edge extraction can be stated as follows (compare with Figure 2.1):
A cell does not belong to the edge of a figure if

Rule 1: the cell does not belong to the figure itself, i.e., if its input value is
white (or, equivalently, −1, because −1 corresponds to white)

Rule 2: the cell is in the inner part of the figure, i.e., if its input value is black
(or equivalently 1, because 1 corresponds to black) and the input val-
ues of cells C(i− 1, j), C(i, j− 1), C(i, j + 1) and C(i + 1, j) are also
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black.4

(a) (b)

Figure 2.1: (a) input pattern,
(b) the desired output pattern for edge extraction in a 16×16
layer 5

These rules deal only with five cells, namely the center cell and the off-
diagonal cells within the neighbourhood. For the center cell the input and
the output values are required, for the off-diagonal cells only the input value is
needed (see Table 2.2). Moreover, the space symmetry of the edge-extraction

ui j
2

ui j
4 ui j

5 ui j
6

ui j
8

yi j
5

Table 2.2: Inputs and the output involved in the edge-extraction problem

problem allows us to weigh the off-diagonal input values with the same para-
meter b#. Thus, a reduced template vector is sufficient for the correct operation

4Another definition of the edge of a figure may take also cells C(i−1, j−1), C(i−1, j + 1),
C(i + 1, j−1) and C(i + 1, j + 1) into account [2].

5This is the two-dimensional image that was used in [16] to train the network.
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of the network:

ΘΘΘ
T = [ a5 b# b5 c ] , (2.5a)

where

b# = b2 = b4 = b6 = b8

Vectors γγγi and γγγ∞
i are modified and now contain only the relevant input and

output values and have again the same size as template vector ΘΘΘ:

γγγ
T
i =

[
γ

i
5 γ

i
11 + γ

i
13 + γ

i
15 + γ

i
17 γ

i
14 1

]
⇒ γγγ

∞
i =

[∗
γ

i
1
∗
γ

i
2
∗
γ

i
3 1

]T
(2.5b)

where
∗
γ

i
1 = γ

i
5(t→ ∞)

∗
γ

i
2 = γ

i
11 + γ

i
13 + γ

i
15 + γ

i
17

∗
γ

i
3 = γ

i
14

Vector component ∗γi
1 corresponds to the output of cell C(·, ·), ∗γi

3 contains its
input value, and ∗γi

2 is the sum of the off-diagonal inputs around cell C(·, ·).
∗γi

3 and ∗γi
1 can take on values ±1, i.e., the cell’s input and output are either

black or white.

Next, we have to differentiate between cells at a corner, at the border,
or in the inner part of the CNN in order to compute the values of vector
component ∗γi

2. It is obvious that for an inner cell ∗γi
2 can take on values

−4,−2, 0, 2, 4 depending on the sum of white (−1) and black (1) off-
diagonal cells6 around cell C(·, ·). For example, if C(·, ·) is surrounded by
white off-diagonal cells then ∗γi

2 = −4, but if one of these cells is black
then ∗γi

2 = −3 + 1 = −2. For border cells, one of the elements of the sum
γi

11 + γi
13 + γi

15 + γi
17 is zero because a border cell is surrounded only by three

off-diagonal cells. For corner cells two elements of this sum disappear. The
following relations summarize the results:

∗
γ

i
1,
∗
γ

i
3 ∈ {−1, 1 } (2.6a)

∗
γ

i
2 ∈

{−2, 0, 2 } (for corner cells)
{−3,−1, 1, 3 } (for border cells)
{−4,−2, 0, 2, 4 } (for inner cells)

(2.6b)

6The input values of the cells are added.
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From the first rule of the edge-extraction problem it follows that if the input
of a cell is white then the cell has to produce a white output, i.e., whenever
∗γi

3 =−1 the output ∗γi
1 must also be−1. The second rule states that whenever

∗γi
3 = 1 (black input), ∗γi

1 also has to be 1 unless the inputs of the off-diagonal
cells are all black, i.e., ∗γi

2 = 4. From this, the set Γd can be constructed in
a straightforward procedure assigning to it all vectors γγγ∞

i whose components
accomplish one of the following conditions:

(i) ∗γi
3 =−1 ∧ ∗γi

1 =−1

(ii) ∗γi
3 = 1 ∧ ∗γi

1 = 1 ∧ ∗γi
2 ∈ {−4,−3,−2,−1, 0, 1, 2, 3 }

(iii) ∗γi
3 = 1 ∧ ∗γi

1 =−1 ∧ ∗γi
2 = 4

Equation (2.7) shows the result.

Γd =



−1
−2
−1

1

 ,

−1

0
−1

1

 ,

−1

2
−1

1

 ,


1
−2

1
1

 ,


1
0
1
1

 ,


1
2
1
1

 ,
corner cells and inner cells

−1
−3
−1

1

 ,

−1
−1
−1

1

 ,

−1

1
−1

1

 ,

−1

3
−1

1

 ,


1
−3

1
1

 ,


1
−1

1
1

 ,


1
1
1
1

 ,


1
3
1
1

 , (2.7)

border cells
−1
−4
−1

1

 ,

−1

4
−1

1

 ,


1
−4

1
1

 ,

−1

4
1
1




inner cells

Γ f can easily be constructed using the disjoint property of both sets Γd and
Γ f and the fact that all other vectors γγγ∞

i whose components do not accomplish
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any of the conditions (i) – (iii) lead to forbidden equilibrium states:

Γ f = Γ\Γd (2.8)

We now have all the inequalities that bound the solution space of template
vector ΘΘΘ ∈ R4 such that any point in the solution space guarantees the correct
operation of the CNN for edge extraction, independently of the sizes M and N
and the initial state.7 A solution that satisfies inequalities (2.1g), (2.3) and (2.4)
can be computed by the relaxation method for solving sets of linear inequalities
[16]. The following equation gives a solution of the template vector ΘΘΘ for the
edge-extraction problem:

ΘΘΘ =


1.0559
−0.2615

1.2436
−0.3419

 (2.9)

Table 2.3 orders the same result in template notation.

0 −0.2615 0
−0.2615 1.2436 −0.2615

0 −0.2615 0
cloning template B

0 0 0
0 1.0559 0
0 0 0

cloning template A

I =−0.3419
constant current source

Table 2.3: Edge Extraction: same parameter values as in equation (2.9)
ordered in template notation

7The local rules for edge extraction do not involve the initial state of the CNN.
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2.3.1 Sensitivity of the solution point

Comparing Tables 2.3 and 1.3, one can see that the edge-extraction solution
given in the previous section is not in accordance with the templates given in
Table 1.3, although both guarantee the correct operation of the CNN for edge
extraction independently of the initial state of the network. The parametric
templates given in the previous chapter, Table 1.3, take only a subset of all
possible solutions into account, and the solution point in (2.9) lies outside the
corresponding subspace, i.e., it is one of the points not taken into account by
the parametric solution. But the solution found here has the drawback that
it is more sensitive to deviations from the exact template values: changes in
the non-zero template values which are greater than±1.7% push the point out
of the solution space [18], whereas template values with q = 1 in Table 1.3
have a tolerance of ±2.5%. (For q = 2 and the less practical value q = 10 the
tolerances are±2.7% and±2.8%, respectively.) Thus, the point given in (2.9)
is nearer to the border of the solution space than the points in the subspace
given by the parametric solution in Table 1.3.

The sensitivity of the solution plays a role in the chip implementation of
analogue CNNs, e.g., because tolerances of some integration processes make it
nearly impossible to realize exact parameter values [6]. Thus, the requirement
for a low sensitivity of the solution point to deviations from the exact parameter
values means that a point in the “middle” of the solution space should be
considered, in order to (possibly) avoid that it leaves the solution space due to
parameter mismatch. This is an additional constraint that should be taken into
account in the design process of templates [19].

2.4 Example 2: Horizontal Line Detection

As a second example for the design of reciprocal CNNs, we apply our
method to the example of horizontal line detection. In the original paper [2],
a horizontal line detector with the following templates was presented:

A
1 2 1 B = 0 I = 0

Table 2.4: Templates given in [2] for the detection of horizontal lines
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The input pattern is loaded into the initial state xi j(0), 1≤ i≤M, 1≤ j ≤ N.
Unfortunately, however, a CNN with these template values does not always
operate correctly, as can be observed from simulations. We will derive in this
section template values that guarantee the correct operation of the network
for horizontal line detection.

First, let us define the parameter set in the following way:8

A
a4 a5 a4 B = 0 I = c 6= 0

Table 2.5: Template definition for the horizontal line detector

Next, we determine the elements of sets Γd and Γ f (see page 20). Table 2.6
lists the eight possible output situations for the three cells C(i, j−1), C(i, j)

1 2 3 4

5 6 7 8

Table 2.6: The eight possible output situations within the neighbourhood of
an inner cell C(i, j)

and C(i, j + 1) within the neighbourhood of an inner cell C(i, j), 1≤ i≤M,
1 < j < N. At the right and left border of the layer, i.e., for cells C(i, j) with
1≤ i≤M, j = 1,N, we have the output situations of Table 2.7.9

1 2 3 4

Table 2.7: The four possible output situations within the neighbourhood of a
border cell C(i, j) (right hand border)

The multiplicative factor of parameter a4 can take on values−2,−1,0,1,2
8Because of symmetry, we can set a6 = a4.
9Again, because of symmetry, it is sufficient to look only at the right hand border of the CNN

layer.
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depending on the black and white output values of the off-center cells.10 For
parameter a5 only the two weights ±1 are possible, i.e. black or white.

Now, we only have to assign the elements of Γ

Γ =


−2
−1

1

 ,
 0
−1

1

 ,
 2
−1

1

 ,
−2

1
1

 ,
0

1
1

 ,
2

1
1

 ,
−1
−1

1

 ,
−1

1
1

 ,
 1
−1

1

 ,
1

1
1

 (2.10)

to the sets of desired and forbidden combinations. Here is the result:11

Γd =


−2
−1

1

 ,
 0
−1

1

 ,
 2
−1

1

 ,
0

1
1

 ,
2

1
1

 ,
−1
−1

1

 ,
 1
−1

1

 ,
1

1
1


(2.11a)

Γ f =


−2

1
1

 ,
−1

1
1

 (2.11b)

From the elements of Γd and Γ f , inequalities (2.3) and (2.4) can be constructed
which, together with parameter assumption (2.1g), bound the solution space
of the CNN templates for horizontal line detection. The values of Tables 2.8
and 2.9 satisfy all these inequalities, thus, for the given solution points a correct
operation of the network is guaranteed.12

A
0.5 1.75 0.5 B = 0 I =−0.5

Table 2.8: Template values for the horizontal line detector: this parameter
point lies within the solution space for correct operating templates.

10The value −1 is possible for the first two situations of Table 2.7.
11The task of horizontal line detection can be defined with the following rule: isolated (black)

pixels must not appear at the output. Thus, the situations 3 and 2 in Tables 2.6 and 2.7, respect-
ively, have to be assigned to the set Γ f of forbidden combinations.

12Both solution points were randomly chosen within the solution space, i.e., they are not op-
timized in terms of, e.g., sensitivity.
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A
1 2 1 B = 0 I =−1

Table 2.9: Template values for the horizontal line detector: a second para-
meter point within the solution space for correct operating templates

If we compare the values of Tables 2.4 and 2.9 we see that the only differ-
ence lies in the value for the constant current source I, but this difference is
sufficient to guarantee proper operation for the latter solution.

2.5 Example 3: Shadowing

If we think of a black pattern on the CNN layer as an object illuminated
from the right by a parallel-light source, then the cells on the left of the pattern
have to produce black output values representing the shadow of the object.

A template set that performs this task was first published in [20] (see
Table 2.10). The input ui j, 1≤ i≤M, 1≤ j ≤ N, is initialized with the in-

A B
0 2 2 0 2 0 I = 0

Table 2.10: Templates used in [20] for shadowing

put pattern, xi j(0) is set to 1 for all cells.

In [17] a solution with the control operator B = 0 could be derived from
the presented analytic design method (see Table 2.11). Here, the initial

A
0 2 1 B = 0 I = 0.5

Table 2.11: Templates used in [17] for shadowing: the control operator B is
equal to zero.

state xi j(0), 1≤ i≤M, 1≤ j ≤ N, is initialized with the input pattern.

The solutions given in Tables 2.10 and 2.11 both have asymmetrical feed-
back templates A. With the exact design method presented in this chapter,
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A B
q 1 + q q −q 2q 0 I = 3q, q > 0

Table 2.12: Templates for shadowing: the feedback template A is symmetric.
The solution depends on a parameter q. (The bigger q the faster the shadow
propagates to the left hand side.)

a solution with symmetric template A can be given (see Table 2.12). The
asymmetry is transferred to the control operator B. The input ui j, 1≤ i≤M,
1≤ j ≤ N, is initialized with the input pattern, and the initial state xi j(0) is
set equal to −1 for all cells. This solution cannot be found with the analytic
design method of [17] because it requires too many restrictions.

We will derive in the following sections both, the asymmetrical solution
given in Table 2.11, and the symmetric solution given in Table 2.12. Of course,
in the case of the asymmetrical feedback template A, an additional stability
analysis would be needed. With our design method, this analysis usually can
be avoided by considering only reciprocal CNNs which are always stable (see
Footnote 16 on page 12). Since the design method of [17] guarantees the
solution to be stable, we skip the stability analysis (see below).

2.5.1 Exact design applied to a non-reciprocal CNN

The shadowing problem can be completely defined with the following three
rules:

Rule 1 A black output has to remain black.

Rule 2 A white output has to become black if the output of the cell at the right
hand side is black.

Rule 3 A white output keeps its value as long as the output of the cell at the
right hand side is white.

With these three rules the shadow propagates from the left-most cell whose
output is black to the left CNN border cell by cell.13 The parameter set can be
defined in the following way:

13The radius of the neighbourhood of cell C(i, j) is restricted to r = 1, thus, we have to proceed
cell by cell.
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A
0 a5 a6 B = 0 I = c

Table 2.13: Template definition for shadowing from the right hand side

Because of the relation a4 = 0 6= a6 (asymmetrical feedback template A),
the corresponding CNN is non-reciprocal [21]. Again, although our exact
design method usually is used for reciprocal CNNs, it can be applied to the
shadowing task. Intuitively, we can already now say that the three rules given
above guarantee convergence for our shadowing task because we force the
correct output for any given state.14

The elements of Γ are given in the next equation. (The first four elements
correspond to all possible output combinations for cells C(i, j), 1≤ i≤M,
1≤ j < N, and the last two elements to those for cells C(i, j), 1≤ i≤M, j = N,
i.e., at the right hand border of the CNN layer.)

Γ =


 −1
−1

1

 ,
 −1

1
1

 ,
 1
−1

1

 ,
 1

1
1

 ,
 −1

0
1

 ,
 1

0
1

 (2.12)

It is easy to assign the right elements to the sets Γd and Γ f of desired and
forbidden combinations, respectively. The next equations show the result:

Γd =


−1
−1

1

 ,
 1
−1

1

 ,
1

1
1

 ,
−1

0
1

 ,
1

0
1

 (2.13a)

Γ f =


−1

1
1

 (2.13b)

Now, we can construct from the sets Γd and Γ f given in (2.13a) and (2.13b),
respectively, the two classes of inequalities (2.3) and (2.4) that, together
with (2.1g), bound the solution space for the shadowing templates. The solu-
tion given in Table 2.11 satisfies the set of inequalities.

14In fact, the solution given in Table 2.11 which, as we will see, belongs to the solution space
derived in this section, has been proved to be stable [17]. (Moreover, the analytic design method
in [17] automatically produces stable solutions.)
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2.5.2 Shadowing with a symmetric template A

For shadowing with a reciprocal CNN (see Footnote 16 on page 12), we
define the templates in the following way:

A B
a4 a5 a4 b4 b5 0 I = c

Table 2.14: Template definition for shadowing with a reciprocal CNN

Instead of using parameters b4 and b5, one could think of taking b5 and b6
into account. But this parameter set would not give enough information about
the actual state of the network:
Consider the following situation. The inputs of cells C(i, j) and C(i, j + 1) are
both white. Because the outputs of cells C(i, j− 1) and C(i, j + 1) are both
weighted with the same parameter a4, the cell C(i, j) does not know whether
the output of cell C(i, j− 1) or that of cell C(i, j + 1) has become black. For
the latter case, C(i, j) has to produce a black output, i.e., it must propagate
the shadow, but for a black input at cell C(i, j− 1), which is invisible at po-
sition (i, j) for b4 = 0, C(i, j) does not need to produce a black output. Thus,
cell C(i, j) does not know which output it should produce. If cell C(i, j) has
information on the input value of cell C(i, j−1) (b4 6= 0) then it knows whether
the black output value is at position (i, j−1) or (i, j + 1). Two further remarks
have to be made: First, we also need parameter b5 because otherwise there
would be a lack of information at the right hand border of the CNN layer.
And secondly, the initial state xi j(0) has to be set equal to −1 for all cells to
avoid false decisions caused by the symmetric weighting of the outputs of cells
C(i, j−1) and C(i, j + 1).15

Thus, for the parameter set of Table 2.14 we have the input situations with
the corresponding desired and forbidden output patterns listed in Table 2.15.

The output patterns

must not be forbidden, otherwise the output pattern

15Of course, one can design a template set with the three parameters b4, b5 and b6, all 6= 0.
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cell C(i, j), input situation desired forbidden
1≤ i≤M output patterns output patterns

1 < j < N ,

,

,

,

j = 1 ,

,

j = N

Table 2.15: Input situations and the corresponding desired and forbidden
output patterns within the neighbourhood N1(i, j) of cell C(i, j)
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cannot be reached (the cell outputs become black, step by step). If the input
of cell C(i, j) is white then the output patterns

,

cannot be forbidden otherwise the solution space results in an empty one.16

From Table 2.15 the elements of Γd and Γ f can directly be derived.17

Γd =




−1
−1
−1
−1
−1

1

 ,


1
1
1
−1
−1

1

 ,


1
1
−1
−1

1
1

 ,


1
1
1
−1

1
1

 ,


1
−1
−1

1
−1

1

 ,


1
1
1
1
−1

1

 ,


1
1
−1

1
1
1

 ,


1
1
1
1
1
1

 ,


0
−1
−1

0
−1

1

 ,


0
1
1
0
−1

1

 ,


0
1
−1

0
1
1

 ,


0
1
1
0
1
1

 ,

−1
−1

0
−1
−1

1

 ,


1
1
0
−1

1
1

 ,


1
−1

0
1
−1

1

 ,


1
1
0
1
1
1




(2.14a)

Γ f =




−1
−1

1
−1
−1

1

 ,

−1
−1
−1
−1

1
1

 ,


1
−1

1
1
−1

1

 ,

−1
−1
−1

1
1
1

 ,


0
−1

1
0
−1

1

 ,


0
−1
−1

0
1
1

 ,

−1
−1

0
−1

1
1

 ,

−1
−1

0
1
1
1




(2.14b)

16In any case, the two output patterns cannot appear as false final states, i.e., they do not lead to
erroneous shadows, because they are already covered by other cases. (Actually, they correspond
to the initial state.)

17The correspondence of the vector elements can be seen from the template vector:
ΘΘΘT = [ a4 a5 a6 b4 b5 c ], where a6 = a4.
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The solution given in Table 2.12 satisfies the symmetry condition a4 = a6,
parameter assumption a5 > 1, and the inequalities (2.3) and (2.4) that can be
constructed from the sets Γd and Γ f , respectively.

2.6 Summary

In this chapter, an exact design method for reciprocal CNNs with binary
inputs has been presented. Given an application, two disjoint sets of vectors
can be derived directly from the local rules that define the task to be accom-
plished by the network. The sets contain desired and forbidden input/output
combinations, leading to appropriate inequalities which bound the parameter
space. Any point in the solution space, i.e., any set of parameter values that
satisfy all inequalities, guarantees the correct operation of the CNN for the
given task.

The exact design method has been demonstrated in detail first for the prob-
lem of edge extraction. A CNN with parameter values that satisfy the con-
structed inequalities extracts the edge of any pattern at any position in a two-
dimensional layer of arbitrary size, independently of the initial state.18

The second example was horizontal line detection. We derived templates
which guarantee the correct operation of the CNN for the detection of hori-
zontal lines. The solution was computed in a straightforward procedure by
listing all possible output situations within the neighbourhood of inner and
border cells.

Finally, we constructed two different solutions for a propagation-type ap-
plication: shadowing. The feedback template A of the first solution was asym-
metrical. Thus, our design method can also be used for non-reciprocal CNNs,
although a stability analysis is then required. Secondly, we applied our method
to derive a solution with a symmetric A template for shadowing. The presented
design method can be used to find template values for other propagation-type
applications such as, e.g., hole filling [22] or connected component detec-
tion (CCD) [23].

18The convergence time depends on the initial state, e.g., if the initial state is set equal to the
edge of the figure at the input of the CNN, the convergence time is zero, because the solution is
already given by the initial state.





Chapter 3

Separating Capability

The CNN is able to perform different image-processing tasks depending
on the template values, i.e., on the network parameters, used. In the case
of linear templates, the parameter space is divided into different regions by
hyperplanes. Every region is associated with a task, such that all points within
that region let the CNN perform the desired task. In this chapter, a lower and
an upper bound for the number of regions that can be separated with binary-
input CNNs are given, thus answering the question of how many different tasks
such a CNN can perform.

37
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3.1 Different CNN Applications

Every CNN application, such as edge extraction or shadowing, requires its
own parameter values to process the input into the desired output. Figure 2.1
on page 22 shows an input pattern (a) and the corresponding output pattern (b)
for edge extraction.

An exact design method for reciprocal CNNs with binary input values has
been presented in Chapter 2. Given an application (in our first example edge
extraction), the parameter values which let the CNN process the input into the
desired output can be computed by a straightforward procedure. The values
given in Table 2.3 on page 25 solve the task of extracting the edge of an arbit-
rary figure in a two-dimensional layer independently of the initial state. These
values correspond to one point in the solution space of our specific application.

Assuming the CNN’s structure remains fixed, it is interesting to know how
many different applications the CNN can be used for, if only the template val-
ues are varied. This question is related to the capability of a given network to
solve different tasks by changing the parameter values, or, stated differently,
the required complexity or size of a CNN for a given task. In what follows
we shall refer to the Separating Capability of a CNN, meaning the number S
of regions in a given parameter space that a given CNN can separate. Each
region is associated with a different processing task such as, e.g., edge extrac-
tion, shadowing or hole filling, and every point within such a region guarantees
the correct operation of the network for the corresponding task. However, we
cannot predict which tasks have a solution, i.e., there might be empty regions.
This is due to the fact that the maximum number of regions that can be sep-
arated with a given CNN may be smaller than the number of possible tasks.
Whether a task can be performed or not with a given CNN has to be checked
numerically.

3.2 Separating Regions in Parameter Space with
Hyperplanes

The different regions in parameter space that stand for different applica-
tions are separated by hyperplanes,1 which, in the case of CNNs, divide the

1Hyperplanes in the case of linear templates.
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parameter space in a particular manner. For convenience, let us again write the
first-order nonlinear differential equations (2.1) which define the dynamics of
a reciprocal CNN with binary input values:

dxi j

dt
+ xi j = yT

i ja + uT
i jb + c (3.1a)

= γγγ
T
i jΘΘΘ

1≤ i≤ M , 1≤ j ≤ N

where γγγ
T
i j =

[
yT

i j uT
i j 1
]

(3.1b)

=
[
γ

i j
1 γ

i j
2 · · · γ

i j
19

]
ΘΘΘ

T =
[
aT bT c

]
(3.1c)

= [ a1 a2 · · · a9 b1 b2 · · · b9 c ]

yi j(t) =
1
2

(|xi j(t) + 1|− |xi j(t)−1|) (3.1d)

with the following restrictions:

|ui j| = 1 , ∀ i, j (3.1e)

a1 = a9
a3 = a7

,
,

a2 = a8
a4 = a6

(3.1f)

a5 > 1 (3.1g)

Each vector component γ
i j
m, 1≤m≤ 9, converges to±1 for t→∞ [1]. The

vector components γ
i j
m, 10≤m≤ 18, are ±1 for t ≥ 0, see the binary-input re-

striction (3.1e). Thus, γγγi j(t→ ∞) = γγγ∞
i j ∈ {−1, 1}19 contains binary compon-

ents ±1 which correspond to output and input values in the neighbourhood
N1(i, j) of cell C(i, j).2 Let Γ be the set of all N = 2n−1 possible vectors γγγ∞

i ,
i = 1, 2, · · · ,N , with different component values {−1, 1}.3 The variable n
denotes the dimension of the parameter space, i.e., the number of parameters
(which, in the above case is 19). Next, Γd and Γ f , as defined on page 20,

2Again, see page 20, the vector γγγ∞
i j does not strictly belong to {−1, 1}19 because its last

component γ
i j
19 = 1.

3See Sections 2.3 to 2.5 for the case where the vector components may take on other values
than {−1, 1}.
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are disjoint subsets of Γ containing those desired and forbidden vectors γγγ∞
d

and γγγ∞
f , whose components correspond to input/output combinations which

are prescribed by, respectively should not appear in, a specific application,
i.e., a specific mapping function F (see (2.2)). For all γγγ∞

i ∈ Γd , i.e., for vectors
γγγ∞

d , the following inequalities formulate the conditions that the parameter, or,
template vector ΘΘΘ must satisfy to enable the CNN to settle to a desired output
state (identical to inequalities (2.3)):

γγγ
T
d ΘΘΘ ≥ 1, for γ

d
5 = 1 (3.2a)

γγγ
T
d ΘΘΘ ≤ −1, for γ

d
5 =−1 (3.2b)

Here, again, γγγT
d stands for (γγγ∞

d )T .

On the other hand, vectors γγγ∞
f belonging to the set Γ f of forbidden combin-

ations define the following inequalities to assure that the transient of the CNN
cannot converge to an undesired output state for the given input (identical to
inequalities (2.4)):

γγγ
T
f ΘΘΘ < 1, for γ

f
5 = 1 (3.3a)

γγγ
T
f ΘΘΘ > −1, for γ

f
5 =−1 (3.3b)

Now, γγγT
f stands for (γγγ∞

f )T . Inequalities (3.2) and (3.3) together with (3.1g) and
symmetry condition (3.1f) bound the solution space of template vector ΘΘΘ. The
correct operation of a reciprocal CNN with binary input values is guaranteed
by this procedure for any point within the solution space. The elements of Γd
and Γ f can be directly derived from the local rules which define F , i.e., from
the specific application, as shown in Chapter 2 (see also [24]).

From inequalities (3.2a) and (3.3a) on the one hand (when γi
5 = 1), and

(3.2b) and (3.3b) on the other (γi
5 = −1), we can define two different types of

hyperplanes in the parameter space:

γγγ
T
i ΘΘΘ−1 = 0, type I) when γ

i
5 = 1 (3.4)

γγγ
T
i ΘΘΘ+1 = 0, type II) when γ

i
5 =−1 (3.5)

It can easily be shown that whenever γi
5 = 1 (i.e., type I)) the correspond-

ing hyperplane γγγ∞
i passes through the point P1 : [0 0 · · · 0 1]T in parameter

space. For type II) the hyperplane defined by vector γγγ∞
i is shifted through



3.3. Results 41

point P2 : [0 0 · · · 0 −1]T . The correspondence of γγγ∞
i either to Γd or Γ f de-

cides which side of the hyperplane γγγ∞
i (going either through P1 or P2) the solu-

tion has to lie on. Γ, as defined above, is the set of all possible vectors γγγ∞
i with

different component values. Thus, half of all possible combinations contain
vector component γi

5 = 1, the other half γi
5 =−1.

3.3 Results

From the previous section, let us now assume that the CNN with a fixed
structure leads to N = N 1 + N 2 different hyperplanes γγγ∞

i , of which N 1 hy-
perplanes pass through point P1 and N 2 through point P2.4 There are A = 2N

possible assignments of the N hyperplanes γγγ∞
i either to Γd or Γ f , although not

all such assignments may be meaningful, e.g., it makes no sense to assign all
γγγ∞

i to Γ f . As we already mentioned above, the assignment either to Γd or Γ f
decides which side of the hyperplane the solution space has to be on (equations
(3.2) and (3.3), respectively). Thus, the solution space is the intersection of N
half-spaces, one for each hyperplane γγγ∞

i .

Not all intersections, and therefore not all possible assignments, may lead
to a non-empty solution space. This is guaranteed only for n≥N , where n is
the dimension of the parameter space [25]. For n < N , and even in the most
general case, i.e., when the N hyperplanes are in general position 5 in the
space, there might be assignments without common intersection of all half-
spaces. Figure 3.1 illustrates the situation for n = 2 and N = 3: there is no
common intersection of the three shaded half-spaces. Interpreting this for our
application, it means that in such a case there is no solution ΘΘΘ that satisfies
inequalities (3.2) and (3.3).

We will derive a lower and an upper bound on the number S of regions in
parameter space that can be separated by a CNN. We start from the general case
mentioned above, i.e., when the hyperplanes are not restricted to pass through
any given points in parameter space, and then the CNN-specific situation will
be introduced step by step.

The number of possible assignments which do not result in an empty solu-
tion space for N hyperplanes in general position, corresponds to the number

4We generalize the situation although we already know that N 1 = N 2 = N /2.
5In general position means that no two hyperplanes are parallel and no n+1 hyperplanes meet

at the same point.
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of separable regions in parameter space. The result for the number s(N ,n)
of different regions that can be separated in Rn by N hyperplanes of dimen-
sion (n− 1) in general position and in the case where n < N , can be found
in a mathematical treatise of the mid-nineteenth century [25–27]. The result
relevant for our problem is repeated in equation (3.6).6

s(N ,n) =
n

∑
k=0

(
N
k

)
(3.6)

Figure 3.2 numbers the different s = 7 regions for n = 2 and N = 3. Thus, in this
example, only seven out of 23 = 8 assignments lead to a non-empty solution
space.

The number so(N ,n) of separable regions in Rn when all N hyperplanes
of dimension (n− 1) pass through the same point P in the space, is given in
equation (3.7) [25, 26, 28].

so(N ,n) = 2
n−1

∑
k=0

(
N −1

k

)
(3.7)

This situation may be interpreted in the case of n = 2 and N = 3, as if region 7 in
Figure 3.2 had shrunk to point P. All the separable regions so are unbounded,
or, “open”, regions.

The number sc(N ,n) of regions that get lost by the restriction of making all
hyperplanes pass through a common point P is the difference between s(N ,n)
and so(N ,n):

sc(N ,n) = s(N ,n)− so(N ,n) (3.8)
6The relation s(N ,n) < A = 2N holds, as expected for n < N .

Figure 3.1: Possible empty solution space in Rn, n = 2, for N = 3: there is no
common intersection of all three half-spaces
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Figure 3.2: For N = 3 straight lines in general position in the plane, the
number of separable regions is s = 7.

These regions are bounded (convex) regions. Region 7 in Figure 3.2 is a
bounded region.

The goal is still to compute the number S of regions that can be separated
by a CNN in parameter space, i.e., in Rn. The configuration is the one given
above, i.e., N 1 hyperplanes passing through point P1 and N 2 through point P2.
We assume that apart from this condition, the hyperplanes are in a general
position. To develop the solution, the number4sc(N ,n) of bounded regions
which add to the (unbounded and bounded) regions in Rn by increasing the
number of hyperplanes by one,7 is introduced in the next equation:

4sc(N ,n) = sc(N + 1,n)− sc(N ,n) (3.9)

Figure 3.3 shows the4sc = 2 new closed regions which appear in the config-
uration of Figure 3.2 by adding a fourth straight line.

Let us start from the situation where N 1 hyperplanes pass through point P1.
Then, we add N 2 new hyperplanes one by one, all passing through point P2,
until we reach the total number N of hyperplanes. Each time a new hyperplane
is added, the number of bounded regions is increased by4sc. However, these
new hyperplanes are not in general position because of the restriction that all
new hyperplanes shall pass through point P2. This restriction is responsible for
an annihilation of bounded regions,8 but only for N 2 > n. The total number of
unbounded regions is not affected by the CNN-specific configuration, i.e., by
the restriction that N 1 hyperplanes pass through point P1 and the rest through
point P2.

7In general position
8See the remark above where region 7 in Figure 3.2 shrinks to one point.
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Figure 3.3: 4sc = 2 new closed regions are introduced in the configuration of
Figure 3.2 by adding a fourth straight line in general position.

From the previous discussions, the maximum number sr of regions that can
be separated with the configuration given above, i.e., N 1 hyperplanes passing
through point P1 and N 2 through point P2 in Rn, can be easily computed. The
result is given in the next equation, where N = N 1 + N 2:

sr = so(N ,n) +
N 2−1

∑
k=0
4sc(N 1 + k,n)−

N 2−1

∑
j=n
4sc( j,n) (3.10a)

= so(N ,n) − sc(N 1,n) + sc(N 1 + N 2,n)

−

−sc(n,n)︸ ︷︷ ︸
=0

+sc(N 2,n)

 (3.10b)

The first term in (3.10a) corresponds to the total number of unbounded regions.
The second term corresponds to the bounded regions that are added by the N 2
hyperplanes which pass through P2, and the third term to the bounded regions
that shrink onto point P2. The result in (3.10a) is an upper bound because
we assume that, apart from the restriction given above, the hyperplanes are
in general position. Using equation (3.9), most terms in the sums of (3.10a)
annihilate each other. The corresponding simplification of equation (3.10a) is
given in (3.10b).
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The situation in a CNN

For the situation in a CNN we have to take (3.1g), i.e., that a5 > 1, into
account.9 This introduces another hyperplane in Rn. Moreover, being aware of
the fact that for a CNN N 1 = N 2 = N /2, the following results can be derived
from equation (3.10a):

Smax(N ,n) = so(N + 1,n) +
N /2

∑
k=0
4sc(N /2 + k,n)−

N /2−1

∑
j=n
4sc( j,n) (3.11a)

Again, cancelling terms within the sums, we obtain:

Smax(N ,n) = so(N + 1,n) + sc(N + 1,n)−2sc(N /2,n) (3.11b)

Equations (3.11) give the upper bound Smax for the separating capability S
of a CNN, i.e., the maximum number S of regions in parameter space that can
be achieved by a CNN, as its parameter values are varied. The explanation
why (3.11) is the upper bound for the separating capability and not the exact
number of regions in parameter space, is the following: since the N hyper-
planes γγγ∞

i are determined by the combination of output and input values in the
neighbourhood of a CNN cell, they may not lie in general position (apart from
passing through points P1 and P2, see above), as required for the computation
of Smax. Moreover, the exact number of separable regions could only be given
by investigating how the hyperplanes lie in parameter space.

Given the N hyperplanes γγγ∞
i (which are all different), the lower bound for

the separating capability of a CNN is given by

Smin(N ,n) = so(N + 1,n) = 2
n−1

∑
k=0

(
N
k

)
(3.12)

This is the case when all N hyperplanes pass through the same point P3 6= P1,2
in parameter space. The difference (Sc)max between Smax and Smin

(Sc)max(N ,n) = Smax(N ,n)−Smin(N ,n) (3.13)

9The symmetry condition (3.1f) is irrelevant because it leads to an appropriate reduction of
the parameter space.
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corresponds to the maximum number of bounded convex regions in parameter
space.

The even number N of hyperplanes γγγ∞
i in parameter space is equal to the

number of elements in Γ (see above). The set Γ, and therefore its size N , can
be derived immediately from the structure of the CNN, i.e., from its template
definitions. The variable n denotes the number of parameters.

In summary, the separating capability S of a CNN varies within the range

Smin ≤ S≤ Smax (3.14)

and, as we see from the following equations, its value can be split into two
parts So and Sc corresponding to unbounded and bounded convex regions,
respectively:

S = So + Sc (3.15a)

where So = Smin (3.15b)

0 ≤ Sc ≤ (Sc)max (3.15c)

3.4 Simplification of Formulas

Equations (3.8)–(3.11) can be simplified in the following way: for (3.8)
we have

sc(N ,n) = s(N ,n)− so(N ,n)

=
n

∑
k=0

(
N
k

)
−2

n−1

∑
k=0

(
N −1

k

)

=
(

N
n

)
+

n−1

∑
k=0

(
N
k

)
−2

n−1

∑
k=0

N − k
N

(
N
k

)

=
(

N
n

)
+

n−1

∑
k=0

2k−N
N

(
N
k

)

=
(

N
n

)
− n

N

(
N
n

)
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=
(

1− n
N

)(
N
n

)
(3.16)

Thus, the number sc(N ,n) of bounded regions can be computed with equa-
tion (3.16) avoiding the evaluation of sum terms.

Using this result, we can give the following explicit formula for equa-
tion (3.9):

4sc(N ,n) = sc(N + 1,n)− sc(N ,n)

=
(

1− n
N + 1

)(
N + 1

n

)
−
(

1− n
N

)(
N
n

)
=

N + 1−n
N + 1

N + 1
N + 1−n

(
N
n

)
−
(

1− n
N

)(
N
n

)
=

n
N

(
N
n

)
(3.17)

Next, equation (3.10b) becomes

sr = so(N ,n) + sc(N 1 + N 2,n)− sc(N 1,n)− sc(N 2,n)

= 2
n−1

∑
k=0

(
N −1

k

)

+
N 1 + N 2−n

N 1 + N 2

(
N 1 + N 2

n

)
− N 1−n

N 1

(
N 1

n

)
−N 2−n

N 2

(
N 2

n

)
(3.18)

Finally, equation (3.11b) simplifies to:

Smax(N ,n) = so(N + 1,n) + sc(N + 1,n)−2sc(N /2,n)

= 2
n−1

∑
k=0

(
N
k

)
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+
N + 1−n

N + 1

(
N + 1

n

)
−2

N −2n
N

(
N /2

n

)

= 2
n−1

∑
k=0

(
N
k

)

+
N + 1−n

N + 1
N + 1

N + 1−n

(
N
n

)
−2

N −2n
N

(
N /2

n

)

= 2
n−1

∑
k=0

(
N
k

)
+
(

N
n

)
+

2
N
(
2n−N

)(N /2
n

)
(3.19)

Thus, the upper bound Smax for the number of regions in parameter space that
can be achieved by a CNN, as its parameter values are varied, is given by the
explicit formula (3.19).

3.5 Examples

Let us give two examples to show that the number of different regions in
parameter space is often sufficiently large and, therefore, that there are gener-
ally many different tasks that can be solved with a given CNN.

3.5.1 Full number of parameters

The first example is the one given by the equations which define the class
of CNNs dealt with in this chapter, i.e., equations (3.1). Because of symmetry
conditions (3.1f), the number n of parameters is reduced from 19 to 15. The
parameter space is then R15.10 As an approximation, i.e., without regard for
effects at the boundaries of the CNN array, N ≈ 34 ·2 ·29. (The weights of the
four parameters a1, · · · , a4 in (3.1c) can have one of the three possible val-
ues -2, 0, or 2, and the weights of a5 and b1, b2 · · · b9 are ±1.) The resulting
bounds Smin and Smax on the number S of separable regions in parameter space,

10Of course, we still could stay in R19, but the four symmetry conditions (3.1f) would force the
solution to be in R19−4 anyway.
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can be computed with equations (3.12) and (3.19), respectively, and are listed
in the first row of Table 3.1. These bounds guarantee the existence of a suf-
ficiently large number of different tasks which can be solved with reciprocal,
binary-input CNNs, and a neighbourhood radius r = 1.

3.5.2 Reduced number of parameters

The number of CNN parameters in the edge-extraction example of Sec-
tion 2.3 on page 21 is n = 4, and the number of different hyperplanes is N = 36.
Again, Table 3.1 lists the resulting bounds on the number S of separable re-
gions. Thus, even such a pruned CNN is capable of solving a large number of
different tasks.

n and N Smin Smax

n = 15, N = 82944 ≈ 1.67 ·1058 ≈ 4.62 ·1061

n = 4, N = 36 15614 69759

Table 3.1: Bounds on the number S of separable regions in parameter space
for different CNN structures

3.6 Summary

In this chapter a lower and an upper bound on the separating capability
of CNNs with binary input values have been computed. Separating capabil-
ity means the number of different tasks that can be processed by a CNN of
a certain structure. The different tasks are characterized by (unbounded or
bounded, see below) regions in parameter space which are separated by hy-
perplanes. Every hyperplane stands for a possible combination of input and
output values within the neighbourhood of a CNN cell. Half of the hyper-
planes pass through a certain point in parameter space, the other half through
a second point.11 The upper bound on the separating capability is the result in

11There might be a further hyperplane for parameter assumption (3.1g).
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the case where, apart from the previous restrictions, the hyperplanes are in a
general position, i.e., no two hyperplanes are parallel and no n+1 hyperplanes
meet at the same point, where n is the dimension of the parameter space. The
lower bound is the result for the case where all hyperplanes meet somewhere at
a same point in parameter space. How the hyperplanes lie in parameter space
has to be investigated individually for the concrete set of possible input and
output combinations within the neighbourhood of a specific CNN structure.

The results reveal that the number of different tasks which can be solved
by CNNs with a reduced number of parameters, is in the order of tens of
thousands. Taking all parameters of a reciprocal CNN with neighbourhood
radius r = 1 into account, an immense number of input/output-mappings can
be performed with CNNs by varying the template values.12

The regions in parameter space can be classified into unbounded and
bounded regions. Both types of regions may lead to very sensitive parameter
values, i.e., small variations in the coordinate values of a point within such
a region may push the point out of that region (see Section 2.3.1 for a con-
crete example). This may not happen for unbounded regions which, as can
be seen from the numbers in Table 3.1 and equations (3.13) to (3.15), appear
more rarely in parameter space than bounded regions: the absolute sensitivity
can be made arbitrarily low by picking a point within the unbounded region
which tends to infinity. However, the relative sensitivity cannot be increased
arbitrarily.

The results computed in this chapter can also be interpreted from a different
point of view: given a minimum number of different input/output-mappings
that a CNN should be able to perform, appropriate values n and N may be
chosen. Or, stated differently, if a required mapping function F cannot be real-
ized with a given CNN because the assignment of input/output-combinations
to desired and forbidden mappings results in an empty intersection of the cor-
responding half-spaces, a solution may be found in a parameter space of higher
dimension. Thus, by introducing more parameters, i.e., increasing the num-
ber of non-zero template elements, the task defined by F may be solved with
the tighter interconnected CNN. The bounds presented in this chapter give a
quantitative measure for the number of possible tasks that can be performed
with a given CNN.

12Notably, Smax� 2N , but, in our opinion, this is not a severe drawback due to the rather large
number of separable regions.
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The second part of this thesis is dedicated to the capability of CNNs to
solve an acoustical-signal classification problem, thereby demonstrating that
CNNs are generally suitable for the processing of non-stationary signals.



Chapter 4

Introduction

In this chapter, we introduce the concept of acoustical-signal classification
with CNNs. The description of the problem and the solution overview are
given. This chapter serves as a guide through the second part of this thesis.
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4.1 Classification of Alarm Signals for
Hearing Aids

A technical solution for hearing aids must accomplish several requirements
in order to be accepted by the hearing impaired: among others it has to be
small, light and inconspicuous, the power consumption must be negligible, and
the performance has to be as close as possible to that of the human auditory
system. The requirement of a small size may be accomplished if the involved
electronic circuits are integrated in a single chip. Analogue integrated circuits
fulfill the requirement of low power consumption [6] and, especially for CNNs
[1,2,14,29], they provide fast and powerful signal-processing devices needed
for an accurate and reliable audio prosthesis.

The aim of building an artificial ear that functions as perfectly as the one
provided by nature is unrealistic. Presently, we restrict ourselves to a well-
defined, “simple” task: let the technical device classify signals from four given
sets of acoustical alarms (tram bells, car horns, phones, and tram rings) [30,
31]. Thus, when presented with one signal out of a given class, the hearing
aid should be able to tell the patient, either by visual or tactile means, which
class was active. We consider this to be an appropriate task to investigate the
capabilities of CNNs with regard to the recognition of non-stationary signals.

The problem solution for the classification of acoustical alarm signals is
divided into three parts (see Figure 4.1). The first performs a transformation of

Figure 4.1: Processing blocks for the classification of acoustical alarm sig-
nals

the one-dimensional acoustical signals into sequences of images. In Figure 4.1,
the first block transforms an alarm signal into a series of images which have
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a resolution of 128× 128 pixels, and which come out of the first block at a
rate of 32 images per second. Thus, every input signal is characterized by its
corresponding image sequence.

The images serve as input to the second processing block, which is the
CNN.1 The CNN is responsible for the extraction of the “relevant” information
carried by the image sequence, and it also performs a time–to–space mapping,
concentrating the information distributed over an image sequence into a single
image.

For the classification task, the image at the output of the CNN should
ideally possess the following properties: output images belonging to signals
from the same class should be similar, and output images belonging to signals
from different classes should be distinguishable. If this condition is satisfied,
the third and last processing block, namely the classification device, is able to
separate the different classes of input signals by sorting the output images of
the CNN into the correct classes.

4.2 Problem Statement

We take the same sets of signals as in [30,31] (see Table 4.1). The signals

set class # signals
1 tram bells 57 from 36 trams
2 car horns 63 from 42 cars
3 phone rings 55 from 23 phones
4 tram rings 30 from 26 trams

Table 4.1: Four different classes of acoustical alarm signals

were recorded on analogue tape. For our simulations, we use the 8-bit µ-law
encoded data2 sampled at a rate of fs = 8 kHz. The task is to sort a given sig-
nal belonging to one of the sets in Table 4.1 into its class by using CNNs. By
‘CNNs’ we understand the CNN universal machine as presented in [14]. Nev-
ertheless, we require that only those features of the CNN universal machine
be used which can be implemented on silicon with reasonable efforts.

1This is the reason why the input signals have to be transformed into a 2-D representation in a
preprocessing step.

2This corresponds to 12-bit linear resolution.
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4.3 Solution

As mentioned above, the solution consists of three blocks:

(I) 1-D to 2-D Transformation
The function of the preprocessing stage is to transform the input signal
into an image sequence in order to supply the CNN with images. We
will present the method in Section 5.1. Beside representing amplitude
information, the method also preserves phase information of the input
signal.

(II) CNN
The CNN’s processing is twofold: first, it extracts meaningful patterns
from every image of the sequence, and then it combines them by a
simple OR-operation to perform the time–to–space mapping. This res-
ults in a single image which characterizes the given acoustical alarm
signal. The extraction of meaningful patterns can be accomplished by
at least three different approaches. They are presented in Chapter 6.

(III) Classification Device
A one-layer perceptron is used to classify the images produced by the
CNN. It is presented in Chapter 7. The restriction that the one-layer
perceptron can separate regions in the input space only linearly (with
hyperplanes), is not relevant in our application. This is due to the fact
that the characteristic images produced by the CNN fulfill the condition
of being similar for signals of the same class, and of being distinguish-
able for signals of different classes.

Finally, in Chapter 8 the achieved error rates are listed. The rates were
achieved without any special tuning to the given alarm signals.

4.4 Summary

In this chapter, a concept for the classification of acoustical alarm sig-
nals using CNNs was introduced. The three processing blocks of the solution
were sketched pointing to the corresponding chapters with detailed descrip-
tion, thereby providing a guide for the second part of this thesis.



Chapter 5

Phase-Preserving 2-D
Representation of Acoustical
Signals

The first section of this chapter presents a processing method which trans-
forms acoustical input signals into corresponding image sequences. The most
important feature of the method is that besides representing amplitude inform-
ation, it also preserves phase information of the input signal. Basically, it
consists of two parts: the first models the basilar membrane, and the second
performs a correlation.

Because the model of the basilar membrane uses filter biquads, i.e.,
second-order linear filters, we shall present in the second section of this
chapter a CNN-compatible realization of arbitrary second-order linear filters
or biquads. We shall derive the general biquad solution from two realizations
of low-pass filters and from one for band-pass filters. Thus, the CNN realiza-
tion of arbitrary biquads makes it possible to build up the model of the basilar
membrane with CNNs.
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5.1 The Binaural Chip

The first part of the so-called binaural chip [32] models the basilar mem-
brane in the cochlea of the inner ear. This can accurately be done by a filter
cascade of second-order low-pass filters [33]. They are equally spaced on the
logarithmic frequency range of the ear. Thus, a pole frequency of each filter
corresponds to a location along the unrolled basilar membrane where the latter
is sensitive to a certain audio frequency (see Figure 5.1). High frequencies are

frequency [Hz] (log-scale)

Frequency response (magnitude)

The frequency axis corresponds to the
unrolled basilar membrane where high
and low frequencies are detected at the
beginning and the end of the membrane,
respectively.

Figure 5.1: Four equally-spaced low-pass filters along the basilar membrane:
fl = 512 Hz, fu = 4 kHz, qp = 5 (see equations (5.1) and (5.2))

detected at the beginning of the membrane, low frequencies at the end. The
cascade itself acts as a delay line which alters the phase: a low-frequency input
signal passes through the first filters without any modification of its magnitude
but with a change in phase, i.e., a delay. Considering only the magnitude of
the filtered signal and ignoring the phase results in a loss of information. The
analogue model of the basilar membrane implemented in the binaural chip
preserves that phase information.

Since the CNNs process two-dimensional arrays, the information content
of the acoustical signals must be mapped into images. The binaural chip pro-
duces a 2-D representation of the audio signals in its second part by correlating
the phases of two waves which propagate along two basilar membranes, i.e.,
along two identical filter cascades.
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5.1.1 Model of the binaural chip

Although the analogue binaural chip already works on an experimental
level, we built a model of it on a digital computer (see Appendix A.1). This
has two advantages: first, because there are no fully programmable CNN chips
yet available, and the CNN must be modelled anyway, the whole classification
device including the preprocessing stage, i.e., the binaural chip, can be sim-
ulated on the computer. The other advantage is that the parameters of the
binaural chip can easily be tuned in the model and the behaviour of the tuned
parameters observed.

The digital model of the basilar membrane consists of a low-pass filter cas-
cade of K stages. Each stage is the bilinear transformation1 of the i th second-
order low-pass filter in the time-continuous filter cascade. Equation (5.1)
shows the transfer function of an analogue low-pass filter where ωpi denotes
the pole frequency of the i th filter, and qp is the quality factor of the low-pass
filters, equal for all filters in the cascade.

Ti(s) =
ω2

pi

s2 +
ωpi
qp

s + ω2
pi

; i = 1,2, . . . ,K (5.1)

The pole frequencies of our basilar-membrane model are equally spaced along
the logarithmic scale of the frequency range covered by the filter cascade.
(See equations (5.2) where fl and fu denote the lower and upper frequencies,
respectively.)

ωpi = 2π10(K−i) f̄ +log10 fl (5.2a)

where: f̄ = (log10 fu− log10 fl)/K (5.2b)

The way in which a sinusoidal input signal travels along the filter cascade
is described in [32]. The signal passes the first filter stages without suffering
any significant changes in its amplitude,2 but with a phase shift: the first filters
with the highest pole frequencies act as all-pass filters and cause the input
signal to be delayed. This way, a wave is generated along the filter cascade.

1The bilinear transformation to the z domain preserves the frequency response of the filters in
the s domain. The nonlinear distortion of the frequency axis can be compensated in the design
procedure of the digital filters [34].

2For a sufficiently low input frequency.
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Only when the signal arrives at the filter stages whose pole frequencies are
in the range of the frequency of the input signal, the amplitude of the wave
which propagates along the filter cascade is first enhanced (for a sufficiently
large qp) and then rapidly damped in the next filter stages. The propagation of
the wave and its extinction are drawn in Figure 5.2. It shows three snapshots of
a 2 kHz-sine input signal on the filter cascade, i.e., on the model of the basilar
membrane: at first the signal passes through the filters without a change in
its amplitude (right-hand side). At the location where the membrane is most
sensitive to a frequency of 2 kHz we see the highest deflection. After that the
wave rapidly dies out. Another illustration of the wave propagation is given in

The figure shows the filter-cascade out-
put which models the shaping of the
basilar membrane (ordinate, normalized
values). The sine wave enters the cascade
of 56 (discrete-time) low-pass filters (ab-
scissa) from the right.

Figure 5.2: Three time snapshots of a 2 kHz-sine wave on the basilar mem-
brane

Figure 5.3 where different snapshots of the shaping of the basilar membrane
are shown one behind the other, i.e., the time axis goes from the front to the
back of the image.

The 2D-transformation of the acoustical signals is performed in the second
part of the binaural chip. In our application, the same signal is applied to two
identical filter cascades (binaural).3 The first is placed horizontally and the
second vertically at the lower and right edge of a square, respectively, both of
them having the highest-frequency filter stage at the lower-right corner. The
crossings of all filter outputs (see Figure 5.4) form the pixels of the 2-D repres-
entation which is computed at a rate of r images per second. In our discrete-
time model of the binaural chip, the correlation of the output signals coming
out of the filter cascades is performed in the following way: for every time

3Feeding the binaural chip with two different (e.g. time-delayed) signals, contributes to an
orientation detection of the signal source, but not to the signal classification.
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Figure 5.3: Illustration of the wave propagation on the basilar membrane

step, the signum function of the filter outputs in both cascades is computed,
i.e., the quantitative description of the wave amplitude gets lost, and only its
sign is retained. However, small deviations from zero, e.g., in the presence of
noise, would then be overvalued, such that a threshold for positive and neg-
ative values is introduced within which the filter outputs are still regarded as
zero for the computation of the signum function (see variable threshold
on page 142). Thus, with the signum function we mark the position of the
wave on the filter cascade for every time step retaining the phase information
of the wave. This reference to the phase at every frequency location, i.e., at
every filter output, is used to compute the 2-D representation of the acoustical
input signal: at every time step the sign values of the filter outputs of both
cascades are multiplied in the way illustrated in Figure 5.4. For every pixel,
values −1, 0 and 1 are possible. They stand for anticorrelation, no signal, and
correlation, respectively. The grey-level pixel values of the final images res-
ult from the summation of the values computed at every time step during the



62 Chapter 5. Phase-Preserving 2-D Representation

The two filter cascades are placed at the bottom
and the right. The crossings of the filter outputs
form the pixels of the 2D-representation.

Figure 5.4: Schematic representation of the 2D-transformation for 11×11
filter outputs

integration time 1/r, i.e., during the time window for one image.

The resulting grey-scale images, one every 1/r seconds, are symmetric
along the diagonal which goes from the upper-left to the lower-right corner
because we feed the same signal into two identical filter cascades. Neverthe-
less, the resulting output signals are spread over two dimensions, i.e., the cor-
relation introduces the second dimension to the binaural-chip output in spite of
losing (nearly) half of the pixels in the symmetric region of the output images.

The binaural chip has been implemented as an analogue circuit on a chip
[32]. The precision of such networks hardly reaches 8bits. We took this fact
into account by storing the output images of our binaural-chip model with a
precision of only 8bits as well.

5.1.2 Frequency/time trade-off

In our model of the binaural chip, see Section A.1, we can easily change
parameter values to check the performance of the whole classification system
according to different settings (see Chapter 8). However, the parameter-value
selection is constrained by physical properties. Table 5.1 lists the parameters
we can set, and how they are denoted in the model.

The number K of filters stands for the frequency resolution of the basilar-
membrane model, and is related to the sampling frequency fs and the image
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parameter name in the model
number K of filters in the cascade filters
lower frequency fl [Hz] fu
upper frequency fu [Hz] fo
quality factor qp q
sampling frequency fs [Hz] fs
image rate r in images per second r
noise threshold threshold

Table 5.1: Parameters of the binaural-chip model

rate r, i.e., the time resolution, in the following way:

K =
fs

2r
(5.3)

Equation (5.3) is a direct consequence of the discrete Fourier transform (DFT)
[34]: during the time interval for one image there are fs/r samples available,
and the number of samples on the positive frequency axis is half that amount.
Interpreting equation (5.3), it states that the frequency resolution K is propor-
tional to the reciprocal of the time resolution r, i.e.,

K ∼ 1
r

(5.4)

Thus, if we increase the number of filters in the cascade, we have to lower
the rate at which we produce images with our binaural-chip model. The total
number P of pixels for the whole image sequence (assuming the signal is L
samples long) grows with K2:

P = K2 ·
(

r
L
fs

)
(5.5)

The term in parentheses in equation (5.5) denotes the number of images which
are produced for the whole signal. From this term, we see that the relation
between the number P of pixels and the image rate r is only linear. We are
interested in the dependency of P on K taking the frequency/time trade-off of
relation (5.4) into account. It results from equations (5.3) and (5.5):

P = K
L
2

(5.6)
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The lower and upper frequencies fl and fu, respectively, should ideally
lie in the audible frequency range. The upper frequency fu and the sampling
frequency fs are related to each other through the sampling theorem [34], i.e.,
2 fu < fs.

The quality factor qp is related to the number K of filters. This is due to
the fact that on the one hand, qp has to be sufficiently large to avoid early
damping of the wave. On the other hand, if the wave is amplified too much in
every filter stage, the deflection may be so large as to cause excessive signal
levels in the filters. For a low-pass filter of the form (5.1) (see page 59), the
maximum deflection

|T ( jω)|max =
2q2

p√
4q2

p−1
(5.7)

is reached at

ωmax = ωp

√
1− 1

2q2
p

(5.8)

as can easely be proven by setting the first derivative of |T (s)|, s = jω, equal
to zero.

Finally, the noise threshold has been set empirically from simulations.

5.1.3 Output images of the binaural chip

Although the image sequences produced by the binaural chip are best dis-
played as movies, we will reproduce the results for the four signals in Fig-
ure 5.5 on the following pages.4

The images in Figures 5.6 to 5.9 are ordered row wise from left to right,
i.e., the first image of the sequence is at the upper left corner, the second image
is at the right of the first, and so on. The output images have been generated
for the following parameter values (see Table 5.1, and page 142):5

filters fu [Hz] fo [Hz] q fs [Hz] r threshold
64 100 3750 1 8192 32 0.05

4We arbitrarily chose the second signal from every class of our data base.
5According to equation (5.3), K (=filters) could be 128 for r = 32. For the representation

of the output images in Figures 5.6 to 5.9 we can afford the lower resolution.
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Figure 5.5: Samples of the acoustical alarm signals (normalized amplitudes)
The abscissas correspond to the discrete time samples for a sampling fre-
quency of fs = 8kHz.
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Figure 5.6: Output images of our binaural-chip model for signal bell02
(see Figure 5.5)
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Figure 5.7: Output images of our binaural-chip model for signal horn02
(see Figure 5.5)
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Figure 5.8: Output images of our binaural-chip model for signal phone02
(see Figure 5.5)
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Figure 5.9: Output images of our binaural-chip model for signal ring02
(see Figure 5.5)
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5.2 Realizing Filter Biquads with CNNs

We are using CNNs for the classification of acoustical alarm signals. In a
first preprocessing step we model the basilar membrane with a filter cascade
of linear second-order low-pass filters (see the previous section and [35]). The
basilar membrane is located in the inner ear (cochlea), and performs a fre-
quency and phase analysis of the incoming sounds. The waves which propag-
ate along two identical basilar membranes are correlated in a second step such
that a 2-D representation of the acoustical input signals is generated. The en-
tire signal preprocessing may be incorporated into the CNN itself, if the filter
cascade, i.e., the low-pass filters, can be modelled with CNNs.

Efforts are presently under way to incorporate a CNN into a so-called “uni-
versal machine”. Thus, although it is essentially a nonlinear network, such a
universal machine should also be capable of modelling linear systems. In this
section we show how to realize arbitrary second-order linear filters (i.e., bi-
quads) with a CNN structure. The time-continuous signal to the CNN may well
be time-varying, and the CNN may well be operated as a dynamical system,
thus it will not be viewed only as a mapping device as in image processing.

First of all, we will describe how a filter biquad — whose biquadratic
transfer function is given in equation (5.9) — can be realized with a CNN-
compatible structure. To understand the meaning of the building blocks within
the biquad cell we will derive the solution for the special case of a second-order
low-pass filter and treat the general case later.

5.2.1 Solution

The general standard transfer function of a second-order linear filter or
biquad, is given in the next equation [36]:

T (s) = K
s2 + 2σzs + ω2

z

s2 + 2σps + ω2
p

(5.9)

The two-layer CNN cell with nonlinear templates6 given in Figure 5.10 real-
izes a biquad as defined in (5.9). The corresponding transfer function is given
in equation (5.10).

6As in [12], we say that a CNN has nonlinear templates whenever at least one of its voltage-
controlled current sources cannot be described by i = k ·u, where i denotes the output and u the
input to the VCCS, and k is a constant.
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Figure 5.10: Solution for a CNN realization of a biquad

T (s) =
W (s)
U(s)

=
b̃1

Cw

s2 + b̃
b̃1

s + b
b̃1Cx

s2 + 1
Tw

s + 1
TxCw

(5.10)

where Tx = RxCx, Tw = RwCw

The templates for the CNN biquad are given in (5.11).7

A11 = 1
Rx

A12 = −1
Rx

B11 = b I1 = 0
A22 = 0 A21 = 1 B21 = b̃ I2 = 0 B̂21 = b̃1

du(t)
dt

(5.11)

At this point we have to emphasize three properties of the solution:

The biquad is realized by a 1×1 CNN where the effects of surrounding
cells are not needed.8 Thus, a biquad is realized by a single cell (of a
two-layer CNN, see below). Of course, we can take M×N such cells
and provide many different biquads in a matrix structure with a two-
layer CNN. Adjacent filters are connected to each other through the
local connections within the cell neighbourhoods. Thus, higher-order
filters may be realized with such a cascade of biquads.

A biquad is a second-order network. The cell as introduced in Sec-
tion 1.3 (see Figure 1.2) is a first-order network. Using a multilayer
CNN [1] with two layers helps us to increase the order. Of course, we
can interpret the addition of the second layer as a new definition of the
CNN cell, now of second order.

Finally, the biquad is a linear system. Replacing the piecewise-
linear function given in equation (1.2) with an identity output function,
yi j(t) = xi j(t), where i and j are now restricted to 1, leads to the desired
linear system.

7Here, again, we deal with normalized values.
8This is equivalent to a neighbourhood radius r = 0.
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The current b̃1u̇ (see Figure 5.10) prevents a zero of the transfer function
from existing at infinity, i.e., it ensures that an s2 term exists in the numerator
of the transfer function. Because of this current, we have to speak of a CNN
with nonlinear templates [12]: the output current of the corresponding VCCS
does not depend linearly on the driving voltage. This is, again, a matter of
interpretation. Instead of the nonlinear template B̂21 in (5.11) we can define a
linear template B22 = b̃1 and set the derivative of u as input to the second layer.

The B templates control the filter function of the biquad (low-pass, band-
pass, high-pass filter, etc.). The A templates9 together with the time constants
Tx and Tw determine the poles of the filter. Because Tx and Tw determine the
coefficients of the denominator in (5.10) independently of each other, the poles
of the transfer function can lie anywhere in the left-half s plain.10 The poles
will not be on the jω-axis because Tw = RwCw is supposed to be finite.

The current through Rx and the current 1
Rx

x annihilate each other. Never-
theless, we do not remove the corresponding components, because, first, we
want to remain CNN compatible, i.e., Rx in a CNN is supposed to have a finite
value, and, second, in the chip realization leakage currents cannot be avoided
and may be modelled with Rx.

5.2.2 The low-pass filter

Let us now consider the low-pass filter as a special case of a biquad. This
has the advantage that we do not have to worry about the zeros of the trans-
fer function, and can concentrate only on the characteristic polynomial of the
system, i.e., on the poles. The transfer function of the low-pass filter is given
in equation (5.12a), and equation (5.12b) determines the corresponding differ-
ential equation.

T (s) = K
ω2

p

s2 + ωp
q s + ω2

p
where q =

ωp

2σp
(5.12a)

ÿ +
ωp

q
ẏ + ω

2
p y = Kω

2
p u (5.12b)

9Note that we replaced the piecewise-linear function with y(t) = x(t) as mentioned in the third
remark on page 71.

10This means also that both layers may have different time constants.
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We now wish to find a CNN which behaves like the given low-pass filter,
i.e., one whose differential equation equals that given in (5.12b). We start with
the general two-layer CNN shown in Figure 5.11 which is described by the
linear differential equation given in (5.13).

Figure 5.11: A 1×1 CNN with two layers

ẅ+[
1

Tw
+

1
Tx
− ax

Cx
− ãw

Cw

]
ẇ+

[
− ãw

TxCw
+

1
TxTw

− ax

TwCx
+

axãw

CxCw
− ãxaw

CxCw

]
w =

ãxb
CxCw

u (5.13)

Comparing both linear differential equations (5.12b) and (5.13) we obtain the
conditions (5.14) which must be fulfilled to guarantee equivalence of the low-
pass filter and its CNN realization.11

[
1

Tw
+

1
Tx
− ax

Cx
− ãw

Cw

]
!=

ωp

q
(5.14a)[

− ãw

TxCw
+

1
TxTw

− ax

TwCx
+

axãw

CxCw
− ãxaw

CxCw

]
!= ω

2
p (5.14b)

ãxb
CxCw

!= Kω
2
p (5.14c)

Note that we have only three conditions to determine nine unknown values,
namely Cx, Cw, b, ax, aw, ãw, ãx, Tx and Tw. With the relations given together
with (5.10), we are able to express Tx and Tw as functions of Cx and Cw, respect-
ively. Rx and Rw then appear as parameters. Thus, the number of unknown

11Of course, y has been replaced by w.
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variables reduces to seven (Cx, Cw, b, ax, aw, ãw and ãx), but we still have an
under-determined set of equations.

A first trial

One way of eliminating four unknown variables is to introduce only Cx,
Cw, and b as shown in Figure 5.12. The linear differential equation which
describes the dynamics of this simplified network is given in (5.15).

Figure 5.12: A first trial for the solution of the low-pass filter

ẅ +
[

1
Tx

+
1

Tw

]
ẇ +

1
TxTw

w =
1

CxCw
bu (5.15)

Unfortunately, this approach provides real-valued coefficients if and only if
q≤ 1

2 . Thus, the poles can be only on the negative real axis in the s plain.
Equations (5.16) show the values of the coefficients for q = 1

2 .12

Cx =
1

Rxωp
(5.16a)

Cw =
1

Rwωp
(5.16b)

b =
K

RxRw
(5.16c)

12Again, Rx and Rw are user-defined parameters.
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A first solution

In order to obtain conjugate-complex poles in the s plain the coefficients of
both terms ẇ and w in (5.15) must be independent of each other. Thus, we need
a linear differential equation with only three unknowns, whose coefficients do
not impose any constraints on the location of the poles. Equation (5.17) gives
us such a relation.

ẅ +
1

Tw
ẇ +

1
CwTx

w =
1

CxCw
bu (5.17)

The solution for the unknown terms Cx, Cw and b is given in equations (5.18).13

Cx =
Rw

Rx

1
qωp

(5.18a)

Cw =
q

Rwωp
(5.18b)

b =
K
Rx

(5.18c)

Although we have now a solution for the low-pass filter, we still do not
know what the corresponding CNN looks like. Let us go back to the gen-
eral approach given in Figure 5.11. We have to force this network, described
by equation (5.13), to behave the same as one whose differential equation is
(5.17). Thus, we have to set (5.13) equal to (5.17). This gives us the four ad-
ditional conditions (5.19) which, together with the three conditions in (5.14),
determine all seven unknown values Cx, Cw, b, ax, aw, ãw and ãx.

1
Tx
− ax

Cx
− ãw

Cw

!= 0 (5.19a)

ãw
!= −1 (5.19b)

1
TxTw

− ax

TwCx
+

axãw

CxCw
− ãxaw

CxCw

!= 0 (5.19c)

ãx
!= 1 (5.19d)

13To compute the solution compare the coefficients in (5.17) with those in (5.12b) and use the
relations given with (5.10).
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The templates and the capacitances for the CNN realization of a low-pass filter
with no constraints on the location of the poles are given in (5.20).

A11 = ax = Rw
2+q2

Rxq2 A12 = aw =−Rw
2+Rw+q2

Rxq2

A22 = ãw =−1 A21 = ãx = 1

B11 = b = K
Rx

Cx = Rw
Rx

1
qωp

Cw = 1
Rw

q
ωp

(5.20)

Naturally, the values for Cx, Cw and b are equal to those already given in
equations (5.18).

A simpler solution

As the title of this section suggests, there is a simpler solution for the
CNN realization of the low-pass filter. What can be improved in the previous
approach? Among other things we can ask for conditions simpler than those
given in (5.19) to achieve equality between (5.13) and (5.17). In other words,
we might do better defining other additional conditions than those given by
(5.19). We will see in the next section why we replace (5.19b) and (5.19c) by
(5.21b) and (5.21c), respectively.

1
Tx
− ax

Cx
− ãw

Cw

!= 0 (5.21a)

aw
!= −Cx

Tx
(5.21b)

1
Tx

!=
ax

Cx
(5.21c)

ãx
!= 1 (5.21d)

From (5.21a) and (5.21c) we can immediately say that ãw = 0. (5.21b) and
(5.21c) lead to aw = −1

Rx
and ax = 1

Rx
, respectively, using the relation Tx = RxCx.

The simpler14 solution shown in Figure 5.13 for the CNN realization of a low-
pass filter is given in (5.22).

14Simpler than (5.20) in terms of fewer templates and no dependencies of their values on q.
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Figure 5.13: CNN realization of a low-pass filter

A11 = 1
Rx

A12 = −1
Rx

B11 = K
Rx

Cx = Rw
Rx

1
qωp

A21 = 1 Cw = 1
Rw

q
ωp

(5.22)

5.2.3 The band-pass filter

The transfer function of a band-pass filter is given in equation (5.23a), and
equation (5.23b) determines the corresponding differential equation.

T (s) = K
ωp s

s2 + ωp
q s + ω2

p
where q =

ωp

2σp
(5.23a)

ÿ +
ωp

q
ẏ + ω

2
p y = Kωp u̇ (5.23b)

Again, we start with a general approach: the one shown in Figure 5.14. Its
linear differential equation is given in (5.24).

Figure 5.14: General approach for the CNN realization of a band-pass filter
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ẅ+[
1

Tw
+

1
Tx
− ax

Cx
− ãw

Cw

]
ẇ+

[
− ãw

TxCw
+

1
TxTw

− ax

TwCx
+

axãw

CxCw
− ãxaw

CxCw

]
w =

[
b̃

Cw

(
1
Tx
− ax

Cx

)
+

ãxb
CxCw

]
u +

b̃
Cw

u̇ (5.24)

Compared to the network of Figure 5.11, the only component we have ad-
ded is the VCCS labeled b̃u. From the left-hand side of (5.24) we see that,
as expected, the determination of the poles is the same as for the low-pass
filter. However, in order to force both right-hand sides of equations (5.23b)
and (5.24) to be equal, condition (5.21c) is required.15 Thus, we obtain the
corresponding values for the poles from (5.22), and b and b̃ have to fulfill the
following conditions:

b != 0 (5.25a)
b̃

Cw

!= Kωp (5.25b)

The templates of the solution for the CNN realization of a band-pass filter are
given in (5.26).

A11 = 1
Rx

A12 = −1
Rx

Cx = Rw
Rx

1
qωp

A21 = 1 B21 = K q
Rw

Cw = 1
Rw

q
ωp

(5.26)

5.2.4 The second-order term in the numerator of the trans-
fer function

In the CNN structure all capacitances have a common potential point,
namely the reference point or ground. With this structure, it is not possible
to force both zeros of the biquad to be finite. Thus, the term s2 in the numer-
ator of the transfer function given in (5.9) cannot be realized, unless, as already

15This is the reason why we replaced (5.19c) by (5.21c) in the previous section. Relation
(5.21b) is then a direct consequence of this substitution and the fact that ãw = 0.
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indicated on page 72, we introduce nonlinear templates.16 This is how, e.g.,
high-pass filters or frequency rejection networks (FRNs) [36] can be realized
with CNN-compatible structures.

The values which determine the pole locations have been computed in the
previous sections. The results are displayed in (5.27) as functions of σp and ωp
with parameters Rx and Rw. For convenience, we repeat the transfer function
of a biquad (see (5.9)) in (5.28).

A11 = 1
Rx

A12 = −1
Rx

Cx = Rw
Rx

2σp
ω2

p

A21 = 1 Cw = 1
Rw

1
2σp

(5.27)

T (s) = K
s2 + 2σzs + ω2

z

s2 + 2σps + ω2
p

(5.28)

The only thing we now have to worry about is the second-order term of the nu-
merator. It can be realized by introducing the VCCS labeled b̃1u̇ in Figure 5.10.
For convenience, the network is again depicted in Figure 5.15. b̃1u̇ corresponds

Figure 5.15: Solution for a CNN realization of a biquad

to B̂21 as we already know from (5.11). The linear differential equation which
describes the dynamics of this CNN-compatible biquad is given in (5.29a).
The corresponding transfer function is (5.29b), i.e., the solution we presented
in Section 5.2.1.

ẅ +
1

Tw
ẇ +

1
CwTx

w =
b

CxCw
u +

b̃
Cw

u̇ +
b̃1

Cw
ü (5.29a)

T (s) =
b̃1

Cw

s2 + b̃
b̃1

s + b
b̃1Cx

s2 + 1
Tw

s + 1
TxCw

(5.29b)

16Nonlinear templates, of course, form part of the CNN structure.
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The values for the control templates (see (5.30)) result immediately from a
coefficient comparison between the numerator in (5.29b) (or (5.10)) and the
numerator in (5.28) (or (5.9)).

B11 = K
Rx

ω2
z

ω2
p

B21 = K
Rw

σz
σp

B̂21 = K
Rw·2σp

u̇
(5.30)

Thus, equations (5.27) and (5.30) determine the location of the poles and
zeros of the biquad, respectively. E.g., in order to realize a low-pass filter (see
(5.12)) set ωz = ωp, σz = 0, and B̂21 = 0, or, in the case of a high-pass filter
with T (s) = K s2

s2+2σps+ω2
p
, set ωz = σz = 0.

5.3 Summary

In the first section of this chapter we have presented a 1-D to 2-D trans-
formation which preserves phase information of the input signal. We have de-
scribed the two parts of the so-called binaural chip, namely the filter-cascade
model of the basilar membrane, and the sign correlation of the outputs of two
identical filter cascades fed with the same input signal. For every acoustical
input signal, a sequence of grey-scale images is generated. The images retain
phase information in the acoustical signal. The generated sequence of images
serves as input to the CNN.

In order to generate the image sequence with a CNN-like structure, there-
fore allowing the integration of the preprocessing device into a CNN universal
machine, the filters in the cascades need to be replaced by CNNs with the ap-
propriate templates. In Section 5.2 we have presented a CNN realization for
filter biquads. We started by modelling low-pass filters because their zeros are
at infinity and we could concentrate on the realization of the poles. As has
been shown in Section 5.2.2, there are various possibilities to model the poles
of a low-pass filter. Nevertheless, the values in (5.20) and (5.22) for Cx and Cw
are the same.

The capacitance spread is proportional to q2, and turns out to be the limit-
ing factor for CNN-compatible structures: it would appear that CNNs cannot
compete with capacitance-spread optimized filter realizations [37]. On the
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other hand, if one needs a low-pass filter to pre-process input data to a CNN,
the operation can be done with the same device,17 or at least with a dedicated
block based on the same integration technology as the rest of the CNN chip.
The CNN realization offers advantages especially when linear filters have to
be arranged in a matrix with local connections between the filters, e.g., in a
filter cascade.

In the following sections the CNN solution for the low-pass filter was ex-
tended to higher-order terms in the numerator of the transfer function to realize
band-pass and high-pass filters. Additional constraints had to be taken into ac-
count to achieve the required equality between the numerator of the band-pass
filter and the numerator of its CNN realization.

In order to model the second-order term in the numerator of the biquadratic
transfer function, a nonlinear template had to be introduced. It can be avoided
if the time derivative of the input voltage is used as input to the second layer.
Then the solution is fully compatible to the CNN structure presented in [1,2]:
a biquad can be realized by a 1×1 CNN of two layers without any nonlinear
sources. This is a somewhat “degenerated” and simple CNN. Nevertheless, we
have shown that the CNN universal machine still works for trivial operations
like those performed by linear filters, and that its transient behaviour might be
of interest as well.

17Provided one can tune the template values and the RC constants according to the required
filter parameters.





Chapter 6

Processing Methods with
CNNs

CNNs can be used to solve many different image-processing problems. In
this chapter we present three methods of combining several image transform-
ations to generate images characteristic for a given set of acoustical alarm
signals. Each alarm signal is described by one image which ideally should
have the following properties to achieve good classification results: it has to
be similar to the characteristic images of signals from the same class, and it
should be distinct from the characteristic images of signals from other classes.
Thus, a simple classification device shall separate the acoustical alarm signals
into distinct classes by using the characteristic images produced with CNNs.
All three processing methods use as their input the image sequence produced
by the binaural chip, and incorporate a time–to–space mapping in their last
step to collect information spread over the duration of the acoustical signal
into the required characteristic image.

83
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6.1 Extracting Information from Image
Sequences

The role of the CNN in our alarm-signal classification system, see Fig-
ure 4.1 on page 54, is to process each of the images from the binaural chip, and
then to somehow characterize the entire image sequence, and hence the alarm
signal itself. We avoid the following problem among others, when performing
a time–to–space mapping on the image sequence, i.e., collecting information
spread over the duration of the signal: if we were to continuously indicate
which class the signal seems to belong to, we might give wrong decisions at
the begining of the alarm signal, because the remaining parts of the signal may
still contribute to the characterization. Thus, the classification should prefer-
ably be done for the entire signal, and it is not useful to continuously indicate
which class might be active. The decision is taken after the signal has almost
died out, when no more information about the signal is expected.

The last sentence addresses the question of where the starting and ending
points of the signal are, i.e., the so-called segmentation problem. For our simu-
lations, we took the entire duration into account,1 i.e., we did not introduce any
thresholds which determine whether a signal is present, as proposed in [35].
Two remarks have to be made at this point: first, in a real-life application there
must be a segmentation of the signals coming, e.g. from a microphone, into
silent periods, where only noise is present, and active time intervals, where a
sound is detected.2 This kind of segmentation has already implicitly be done in
our case during the process of recording the signals on analogue tape, and also
at the sampling procedure which led to our data base. Nevertheless, and this
addresses the second remark, the signals of our data base are non-stationary
signals since they contain silent periods, the start and the end of the acoustical
alarm signals, other transitional segments, and the stationary parts. Thus, al-
though the signals have already been roughly segmented, there is still enough
non-stationarity in the signals that modelling them, e.g., via prediction, may
result in an unsolvable problem [38].

For the two parts in which the CNN is used for the classification of acous-
tical alarm signals, namely the processing of the incoming images and the
time–to–space mapping, we made the following assumptions:

1The entire signal means all samples stored in the corresponding files (see Figure 5.5).
2In real-life applications not only alarm signals may be heard but also other acoustical signals.

We do not consider this additional difficulty in our classification task.
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The CNN is supposed to be implemented on a chip [5]. The conver-
gence time of the network to reach the solution for an image-processing
task can then be assumed to be in the range of µ-seconds. Thus, there
is sufficient time to process the images which come out of the binaural
chip at a rate in the range of milliseconds. There should even be enough
time to process an image several times, performing different tasks one
after the other, and combining intermediate results, to achieve more
sophisticated image processing.3

Because the CNN is supposed to be implemented in a chip, the pro-
cessing steps must not rely on high-precision computations, nor on very
sensitive template values. The precision of integrated analogue circuits
hardly reaches 8bits, as already mentioned on page 62.

No multilayer CNNs nor delay-type templates4 should be used since
this would make the chip implementation nearly impossible for larger
CNNs (see the next point). Nevertheless, we allow nonlinear templates.

The size of the CNN, i.e., M and N (see page 5), corresponds to the size
of the correlation matrix of the binaural chip (see Figure 5.4). In other
words, the CNN size has to match the image resolution of the binaural
chip whose precision as an integrated analogue circuit is also reduced
to at most 8bits. Thus, the limiting factor for the image resolution is the
number of filters we can realize in the cascade which models the basilar
membrane for the audible frequency bandwidth.

The task of the classification device (see Figure 4.1) should be kept as
simple as possible. This condition may be satisfied if the alarm-signal
characteristics extracted with the CNN from the sequence of binaural-
chip images are good descriptions of the individual classes.

In dealing with CNNs, one of the major problems is the synthesis of tem-
plates for special tasks. An exact design procedure has been presented in
Chapter 2, but it only serves for binary input pictures, i.e., for black and
white input images. Learning methods, in the sense of the well-known back-
propagation algorithm for multilayer perceptrons [8, 39, 40], are still lacking
for continuous-time CNNs. Nevertheless, the templates for many standard

3This is the basic idea behind the CNN universal machine.
4Delay-type templates [12] are impracticable for large delays and continuous-time CNNs be-

cause of the realization of the required delay-lines.
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image-processing tasks have been catalogued [10,11,41]. New templates are
often synthesised by experience and intuition.

Since we had to rely on the above qualities for template generation, we
first have to define how to obtain a characteristic image, one per signal, from
a sequence of images, like those in Figures 5.6 to 5.9. It is necessary to con-
dense the characteristics into a single image, because the final output of a
CNN is a single image, and also because this is nothing else than performing
a time–to–space mapping. Processing acoustical signals with CNNs has been
studied in [42] where simulations were used to obtain characteristic images.
Several useful processing methods have been developed. All of them have the
following common properties:

The CNN marks the “active regions” within the images of the binaural-
chip output sequence. These regions are patterns like those which can
be observed in Figures 5.6 to 5.9.

For historical reasons, the negative images of the binaural-chip output
images are regarded. This does not impose any substantial changes
since this corresponds to a notion definition: correlation and anticorrela-
tion can be remapped to the values−1 and 1, respectively (see page 61).
Figure 6.1 shows the inverted images of the fourth row of Figure 5.6.

All processing methods are followed by the same time–to–space map-
ping: it is an OR-combination of the processed images. This simple
mapping may have to be improved if more complex signals like, e.g.,
speech signals, need to be processed. However, for our well-defined
task, the summation of all black pixels produced from the individual
images of the binaural-chip output sequence yields the required, char-
acteristic images with the desired properties: images from signals of the
same class are similar, and images from signals of different classes are
distinguishable.5

Figure 6.1: Negative images of the fourth row of Figure 5.6

5These properties have to be valid from the point of view of the classification device, not
necessarily for an observer.
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In the following sections we will present three processing methods and
the basic ideas behind them, and the corresponding characteristic images of
the signals in our data base for the binaural-chip parameter values listed in
Section 5.1.3.

6.1.1 Processing Algorithm 1

The first processing method (hereafter called Processing Algoritm 1), is
the one with the highest classification error rates (see Chapter 8). However,
the rates are already lower than the ones achieved in [30] and [31] with spectral
techniques and (conventional) neural networks, respectively. Processing Al-
gorithm 1 first uses the extreme template [10] with I =−1.9, which is a nonlin-
ear template with neighbourhood radius r = 1 shown in Table 6.1. Essentially,

A B
0 0 0
0 1 0
0 0 0

a a a
a a a
a a a

I =−1.9

PWL-
function a =



−2 , ukl−ui j ≤ −0.21
100(ukl−ui j) + 19 , −0.21 < ukl−ui j ≤ −0.2
10(ukl−ui j) + 1 , −0.2 < ukl−ui j ≤ 0
−10(ukl−ui j) + 1 , 0 < ukl−ui j ≤ 0.2
−100(ukl−ui j) + 19 , 0.2 < ukl−ui j ≤ 0.21
−2 , 0.21 < ukl−ui j

Table 6.1: Extreme template: a is a piecewise-linear (PWL) function of the
argument (ukl−ui j) [12]. The initial state of the CNN is set equal to the input
image.

it compares the sum of the differences between the input pixels within the
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neighbourhood with the threshold value I. The differences (input value of a
cell in the neighbourhood minus the input value of the center cell) are first
passed through a piecewise-linear function before they are summed up. Only
small differences will contribute a positive value to the sum, i.e., the output
of the (center) cell becomes black only if the cells around it have similar in-
put values. Thus, regions of the input image which have similar values will
become black after processing the image with the extreme template.

The results after the application of the extreme template to the negative6

of the images in Figure 5.6 are shown in Figure 6.2. The extreme template
produces noisy images, i.e., there are white and black isolated pixels in the
images which may disturb further processing steps. To get rid of these artifacts,
we apply the noise-removal template given in Table 6.2 to the output of the
extreme template. Figure 6.3 shows the filtered images of Figure 6.2.7

A B
0 0 0
0 1.1 0
0 0 0

0.2 0.2 0.2
0.2 0 0.2
0.2 0.2 0.2

I =−0.7

Table 6.2: Noise-removal template
The initial state of the CNN is set equal to the input image.

Before performing the time–to–space mapping, the number of black pixels
is reduced with the edge-extraction template given in Table 6.3 (see Table 1.3
on page 13 with q = 1). The resulting images, after the application of the

A B
0 0 0
0 1.25 0
0 0 0

0 −1 0
−1 4 −1

0 −1 0
I =−0.5

Table 6.3: Edge-extraction template

edge-extraction template to the images of Figure 6.3, are shown in Figure 6.4.

6See above. The extreme template is not sensitive to the inversion of the input image.
7For lack of space, we cannot show the results for more alarm signals.
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Figure 6.2: Results after processing the negatives of the images in Figure 5.6
with the extreme template given in Table 6.1
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Figure 6.3: Results after processing the images in Figure 6.2 with the
noise-removal template given in Table 6.2
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Figure 6.4: Results after processing the images in Figure 6.3 with the edge-ex-
traction template given in Table 6.3
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Finally, the time–to–space mapping is performed. For example, for the sig-
nal bell02we collect all the black pixels of the images in Figure 6.4 into one
image.8 Figures 6.5 to 6.8 show the results of Processing Algorithm 1 for all
signals in our data base, i.e., these are the characteristic images generated with
Processing Algorithm 1 for the acoustical alarm signals under consideration.9

Figure 6.5: Characteristic images of Processing Algorithm 1 for signals
bell01 to bell57 (row wise from left to right)

8It can be seen in Figure 6.5 on the top row, the second image from the left.
9We are giving the examples for the binaural-chip parameter values listed in Section 5.1.3.
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Figure 6.6: Characteristic images of Processing Algorithm 1 for signals
horn01 to horn63 (row wise from left to right)
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Figure 6.7: Characteristic images of Processing Algorithm 1 for signals
phone01 to phone55 (row wise from left to right)

Figure 6.8: Characteristic images of Processing Algorithm 1 for signals
ring01 to ring30 (row wise from left to right)
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6.1.2 Processing Algorithm 2

Processing Algorithm 2 first applies the modified gradient template given
in Table 6.4 [10,35]. It acts the same way as the extreme template in Table 6.1

A B
0 0 0
0 1 0
0 0 0

a a a
a a a
a a a

I =−0.2

PWL-function a =


2 , ukl−ui j ≤ −2

−2(ukl−ui j)−2 , −2 < ukl−ui j ≤ −1
0 , −1 < ukl−ui j ≤ 1

2(ukl−ui j)−2 , 1 < ukl−ui j ≤ 2
2 , 2 < ukl−ui j

Table 6.4: Modified gradient template: a is a piecewise-linear (PWL) function
of the argument (ukl−ui j) [12]. The initial state of the CNN is set equal to the
input image.

(see page 87). The changes are in the threshold value I, and in the piecewise-
linear function which is used to evaluate the differences of the input values
within the neighbourhood. From the shape of the piecewise-linear function
used in the gradient template it can be seen that only large differences between
the input values within the neighbourhood contribute to the sum which is then
compared to the threshold I. Thus, the gradient template marks regions in the
input image which are inhomogeneous, rather than detecting small differences.

In Figure 6.9 we show the images which result from applying the gradient
template to the negative of the images in Figure 5.6.10

10The modified gradient template, like the extreme template, produces similar results for the
negative of an input image and for the image itself.
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Figure 6.9: Results after processing the negatives of the images in Figure 5.6
(bell02) with the modified gradient template given in Table 6.4
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The second step of Processing Algorithm 2 (before the time–to–space map-
ping) is performed with the speed-detection template shown in Table 6.5. This

A B
0 0 0
0 2 0
0 0 0

−0.25 −0.25 −0.25
−0.25 0.75 −0.25
−0.25 −0.25 −0.25

I =−2

Table 6.5: Speed-detection template
The initial state of the CNN is set equal to the input image.

linear template was used in [43] for speed detection, and checks, as stated
in [43], if a black pixel of the input image has three or less black neighbours.
We can prove this behaviour from the analysis presented in Section 1.4 for the
linear template given in Table 1.2: the speed-detection template (Table 6.5)
has the same form.

For the speed-detection template, and in the case of binary input pixels,
i.e., |ui j| = 1, ∀ i, j, it can be easily shown from the inequalities in (1.14) that
the output of the cell is 1 only if the input pixel of the center cell is black, i.e.,
ui j = 1, and if it is surrounded by three or less black pixels which is what the
cell was supposed to do in [43]. Hence, black input pixels do not appear in the
output image unless they are sufficiently isolated, and therefore black regions
are mostly deleted.

We show in Figure 6.10 the output produced with the speed-detection tem-
plate for the input images given in Figure 6.9. Thus, in Figure 6.10 we see the
binaural-chip output sequence of the alarm signal bell02 after the applic-
ation of the modified gradient template and the speed-detection template on
every image.
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Figure 6.10: Results after processing the images in Figure 6.9 with the speed–
detection template given in Table 6.5
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Processing Algorithm 2 ends with the time–to–space mapping. The char-
acteristic image for signal bell02 results from collecting all pixels in Fig-
ure 6.10 with an OR-combination. As for Processing Algorithm 1, we show
the characteristic images of all alarm signals (Figures 6.11 to 6.14).11 (Again,
our examples, and therefore the characteristic images shown below, were com-
puted for the binaural-chip parameter values listed in Section 5.1.3).

Figure 6.11: Characteristic images of Processing Algorithm 2 for signals
bell01 to bell57 (row wise from left to right)

11The characteristic image of signal bell02 for Processing Algorithm 2 can be found in
Figure 6.11 on the top row, second image from the left.
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Figure 6.12: Characteristic images of Processing Algorithm 2 for signals
horn01 to horn63 (row wise from left to right)
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Figure 6.13: Characteristic images of Processing Algorithm 2 for signals
phone01 to phone55 (row wise from left to right)

Figure 6.14: Characteristic images of Processing Algorithm 2 for signals
ring01 to ring30 (row wise from left to right)
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6.1.3 Processing Algorithm 3

Processing Algorithm 3 needs only one step before the time–to–space map-
ping is performed, i.e., the images coming from the binaural chip are processed
only once before they are ORed. The linear template used, the so-called square
template (see Table 6.6), is nearly of the form given in Table 1.2. The differ-

A B
0 0 0
0 2 0
0 0 0

0 −0.25 0
−0.25 0.4 −0.25

0 −0.25 0
I =−0.5

Table 6.6: Square template: The argument of template B is (ukl + ui j) [12].
The initial state of the CNN is set equal to the input image.

ences are the following:

The values at the corners of template B are set equal to zero.

The argument of template B is (ukl + ui j). This means that the input
value ui j of the center cell is added to the input values ukl of the cells in
the neighbourhood before weighing with template B.

The cell dynamics for the square template is described by the following non-
linear differential equation (see page 9):

ẋi j =−xi j + a5yi j + Ui j + (4b + 2b5)ui j + I (6.1)

We can use the results of the template analysis given in Section 1.4 to see
how the cell behaves. This time, Ui j contains only four terms in the brackets
(equation (6.2)), and C (see (1.8)) is redefined in equation (6.3).

Ui j = b
(
ui−1 j + ui j−1 + ui j+1 + ui+1 j

)
(6.2)

C = U + (4b + 2b5)u + I (6.3)

Of course, in a real implementation one would realize template B with its usual
argument ukl and take the additional influence of ui j with the parameter in the
center of the template into account:

B

0 b 0

b b̃5 b

0 b 0

where b̃5 = 4b + 2b5
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The behaviour of the cell is determined by the following inequalities (see
(1.14)):

U >−0.8u + 0.5 =⇒ y∞ = 1 (6.4a)

U <−0.8u + 0.5 =⇒ y∞ =−1 (6.4b)

Thus, the behaviour can be interpreted from Figure 6.15:

Grey regions, i.e., when U/b, u≈ 0,
are set to white.

Isolated dark pixels, i.e., when
u≈ 1, U/b < 1.2, are mapped to
black.

Pixels in a dark environment, i.e.,
when U/b > 1.2, go to white.

Bright pixels, i.e., when u≈−1, are
set white.

Grey pixels in a bright environment
go to black.

Figure 6.15: Points above and below the straight line U/b = 3.2u− 2 in the
possible region −1 ≤ u ≤ 1, −4 ≤ U/b ≤ 4, lead to y∞ = −1 and y∞ = 1,
respectively.

Figure 6.16 shows the images which result from applying the square tem-
plate to the negative images of Figure 5.6, in order to enhance square-like
patterns.12

12As in the previous processing methods, the images shown in Figure 5.6 are first inverted.
The dividing line shown in Figure 6.15 was placed on that position of the plane to work with the
negative images.
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Figure 6.16: Results after processing the negatives of the images in Figure 5.6
(bell02) with the square template given in Table 6.6
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The black pixels produced with the square template are collected over the
image sequence with the OR-combination. The characteristic images which
result from Processing Algorithm 3 for the binaural-chip parameter values
listed in Section 5.1.3, are shown in Figures 6.17 to 6.20. They are quite
similar to the ones of Processing Algorithm 2 (Figures 6.11 to 6.14).

Figure 6.17: Characteristic images of Processing Algorithm 3 for signals
bell01 to bell57 (row wise from left to right)
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Figure 6.18: Characteristic images of Processing Algorithm 3 for signals
horn01 to horn63 (row wise from left to right)
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Figure 6.19: Characteristic images of Processing Algorithm 3 for signals
phone01 to phone55 (row wise from left to right)

Figure 6.20: Characteristic images of Processing Algorithm 3 for signals
ring01 to ring30 (row wise from left to right)
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In Table 6.7 we list the templates used in Processing Algorithms 1 to 3.

Processing Extreme Noise Removal Edge Extraction
Algorithm 1 Table 6.1 Table 6.2 Table 6.3 OR

page 87 page 88 page 88
Processing Gradient Speed Detection
Algorithm 2 Table 6.4 Table 6.5 OR

page 95 page 97
Processing Square
Algorithm 3 Table 6.6 OR

page 102

Table 6.7: Templates used in Processing Algorithms 1 to 3

6.2 Summary

We presented in this chapter three CNN processing methods which gen-
erate, from the binaural-chip output sequence, a characteristic image for the
acoustical alarm signal fed into the binaural chip. All three methods use an
OR-operation as the last step of an image-processing series, in order to per-
form a time–to–space mapping: information spread over the whole image se-
quence is collected into one image. This image characterizes the alarm signal
and has the following properties: it is similar to characteristic images of sig-
nals which belong to the same class, and it is distinct from characteristic im-
ages of signals from other classes. Thus, the CNN performs a mapping of the
binaural-chip output sequence onto a single image, which specifies the class
to which the acoustical signal at the input of the binaural chip belongs.

The first processing method (Processing Algorithm 1) first applies the “ex-
treme template” to the individual images of the binaural-chip output sequence
to detect regions with similar values in the grey-scale input images. The out-
put images of this first step have large black regions which contain isolated
black and white pixels, i.e., they are “noisy”. These artifacts are cancelled
with a noise-removal template before the number of black pixels in compound
regions is reduced applying an edge-extraction template. All the edges on the
processed images of the binaural-chip output sequence are summed up with
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an OR-combination, in order to produce a characteristic image of the alarm
signal under consideration.

The second processing method (Processing Algorithm 2) uses the “gradi-
ent template” to mark non-homogeneous regions in the grey-scale images pro-
duced by the binaural chip. This template can be interpreted as the comple-
mentary of the extreme template. A direct summation of all black pixels pro-
duced during the whole sequence with the gradient template would blur the
characteristic image too much. Therefore, the “speed-detection template”13

is used before the OR-combination, in order to reduce the number of black
pixels in the individual images.

The third processing method (Processing Algorithm 3) is a surprisingly
simple one: it only needs to process the grey-scale images of the binaural-chip
output sequence once with a linear template, before the pixels are summed up.
The resulting characteristic images of the acoustical alarm signals are quite
similar to those generated with the second method. In fact, we will see in
Chapter 8 that the achieved classification error rates for both methods lie in
the same range.

13The name comes from the first application the template was used for.





Chapter 7

Classification Device

This chapter presents the device used to classify the characteristic images
produced by the CNN processing algorithms. The characteristic images can
be interpreted as points in space. A simple one-layer perceptron is able to
assign the points to the correct classes by separating them with hyperplanes.

111



112 Chapter 7. Classification Device

7.1 Locating Classes in Space

The three CNN processing algorithms presented in the previous chapter
produce characteristic images for the acoustical alarm signals to be classi-
fied: each algorithm uses its series of templates (see Table 6.7) and an OR-
combination as time–to–space mapping, to transform a phase-preserving two-
dimensional representation of a given acoustical alarm signal, i.e., the binaural-
chip output sequence presented in Section 5.1, into a single image. Thus, every
processing algorithm attaches one image to every acoustical alarm signal.

Now, the classification task can be reformulated in the following way: the
classification of the given acoustical alarm signals is equivalent to the classific-
ation of the characteristic images produced, or, stated differently, we transform
the problem of the classification of time-varying signals into an image clas-
sification problem. This procedure is valid if the characteristic images retain
information about the class the corresponding acoustical alarm signals belong
to, i.e., if the characteristic images of signals from the same class are similar,
and if the characteristic images of signals from different classes are distinct,
which were the requirements we made on the CNN in Section 6.1.

The characteristic images can be represented by vectors whose compon-
ents are the pixel values of the images. Every vector defines a point in space
which stands for the corresponding image. Similar images are mapped onto
points close to one another in space, because similarity means that pixel val-
ues, and hence the vector components, do not differ “too much”. On the other
hand, if the images are distinct, the corresponding points in space are far away
from each other. Thus, the different classes are clusters of points in space.
Figure 7.1(a) illustrates the situation in the plane for points which belong to
two different classes, and which are clearly arranged into two clusters. For this
example, we can lay an infinite number of straight lines in the plane to divide
it into two half-planes, in the course of which all points within one half-plane
are said to belong to one class, and all points within the other half-plane to the
second class.

The example shown in Figure 7.1(a) is well-behaved in the sense that
points from different classes can readily be separated with a straight line. Fig-
ure 7.1(b) shows a more complex situation where the points which belong to
the class of triangles appear in two clusters. The region in the plane we asso-
ciate with the class of triangles may be an assembly of intersections of half-
planes, i.e., both shaded areas in Figure 7.1(b). Thus, the triangles can still be
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(a) (b)

Figure 7.1: (a) Two different classes of points on the plane arranged into two
clusters

(b) Two different classes of points on the plane. Points within
the shaded regions, i.e., the assembly of two intersections of
half-planes, are associated with the class of triangles.

separated by introducing straight lines in the plane, although with more effort
than in the example of Figure 7.1(a), because the corresponding intersections
have to be assembled.

The previous examples illustrate another interesting property of the classi-
fication performed by dividing the plane into regions we assign to the different
classes: the capability of generalization. This means that all points within the
assigned regions are said to belong to the corresponding classes, although only
a finite number of points is used to determine the regions. Thus, further points
which are not used to determine the regions are automatically assigned to the
correct class if they fall into the right region.

What is the situation for the characteristic images of the acoustical alarm
signals under consideration? How do the corresponding points lie in space?
Is it possible to separate them with “straight lines”? And, how well do the
regions attached to the corresponding classes generalize?

We can readily list the following properties in the case of the characteristic
images:

The dimension of the space is equal to the number of pixels in the im-
ages (or a subset of them, see below).
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The vector components only have values ±1 which correspond to the
black and white pixels of the output images of the CNN.

These two points answer the first and the second question, respectively: first,
the dimension of the space the vectors lie in, is� 1, because every image has
several thousand pixels. And, second, the points we map the characteristic
images onto are located at the corners of the unit hyper-cube in that space,
because the coordinates of the points have values ±1.

From page 62 we know that the characteristic images are symmetric along
the diagonal. Thus, the pixels under the diagonal are redundant, and the num-
ber n of vector components can be reduced to the value given in the next equa-
tion, where K is the image resolution along one edge of the square image, i.e.,
the number of filters in the cascade which models the basilar membrane (see
page 62).

n =
K (K + 1)

2
, for K = 1, 2, 3, · · · (7.1)

For K� 1, n ≈ K2/2. Thus, the dimension n of the space we map the char-
acteristic images onto, is (approximately) half the number of pixels of one
image.

The number n in equation (7.1) may be viewed as an upper bound. Since
the pixels at the upper right corner of the characteristic images for Processing
Algorithms 2 and 3 are mostly white (see Figures 6.11 to 6.14, and 6.17 to 6.20,
respectively), they do not contribute class-specific information to the space,
i.e., the values of the corresponding vector components are−1 for (almost) all
images. We might take into consideration only d− 1 pixels at the right-hand
side of the diagonal. Then, the dimension nd ≤ n of the space is given by the
next equation:

nd =
1
2

(
(2K + 1)d−d2

)
, for 1≤ d ≤ K (7.2)

Furthermore, if we ask for nd ≈ n/2, i.e., if we reduce the dimension n of
the space by (approximately) a factor of two compared to equation (7.1), the
width d is given by the following relation:

d =

⌊
K +

1−
√

2K2 + 2K + 1
2

⌋
(7.3)
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where b·c denotes the greatest integer less than or equal to a number.1 Fig-
ure 7.2 illustrates which pixels are taken into consideration with this method

Figure 7.2: Example for the reduction of the dimension of space: only pixels
within a distance d−1 = 2−1 = 1 from the diagonal (at the right hand side) are
considered in this 8× 8 image in order to (approximately) halve the number
of shaded pixels.

in order to (approximately) halve the dimension of space in the case of K = 8:
from equation (7.3) the width d = 2, and from equation (7.2) the dimension
n2 = 15, instead of n = 36 (from equation (7.1)), i.e., only the darker pixels are
taken into consideration, instead of all shaded pixels.

One could use other methods to reduce the dimension of space. The singu-
lar value decomposition (SVD) [44] could be used to concentrate information
spread over all vector components, on a vector of smaller dimension. How-
ever, the corresponding algorithms are founded upon numerical computations
which can be performed with the required precision only by a digital micro-
processor, and the classification system given in Figure 4.1 would then not be
realizable entirely in analogue techniques of modest precision.

7.2 The One-Layer Perceptron

The one-layer perceptron lays hyperplanes in space [8]. The hyperplanes
are determined by the network parameters, the so-called weights. The basic
unit of a perceptron, the neuron, can be realized by analog techniques [45].
The structure of the neuron is shown in Figure 7.3(a). It weighs the com-
ponents yi, 1≤ i≤ n, of an input vector y with the parameters wi, 1≤ i≤ n,
respectively, introduces the constant input 1 and multiplies it with w0, and

1The derivation of equations (7.1) to (7.3) is not shown here. The formulas can be determined
from basic geometrical relations.
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(a) (b)

Figure 7.3: (a) The basic unit of a perceptron, the so-called neuron, builds
the scalar product of an input vector y with a weight vec-
tor w, and passes the result through a nonlinear function
f (·).

(b) The nonlinear function f (·) we use in our application is the
sigmoid function f (x) = tanh(2x)

passes the overall sum through a nonlinear function f (·). The next equation
formulates the operation of the neuron:

v = f (wT y), for y, w ∈ Rn+1 (7.4)

Vector y can be interpreted as a point in Rn+1, where its first component y0 = 1,
and the weight vector w as a hyperplane of dimension n in Rn+1. If the scalar
product of y and w is zero, the point lies on the hyperplane. If the scalar
product is negative, the point y lies on one side of the hyperplane w, and if it is
positive, it lies on the other side. Thus, the hyperplane defined by the weight
vector w can be used to separate points in space. The nonlinear function shown
in Figure 7.3(b) bounds the output value v of the neuron to be within ±1, i.e.,
−1 < v < 1.

For the classification of the acoustical alarm signals, we use four inde-
pendent neurons, one for every class (bell, horn, phone, ring, see Table 4.1 on
page 55). All neurons share the same inputs. This structure is called a one-
layer perceptron with four output units (see Figure 7.4).2 Every neuron lays a
hyperplane in space in order to separate the points which belong to “its” class,

2For convenience, in Figure 7.4, we dropped the input with constant value 1 shown in Fig-
ure 7.3(a).
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Figure 7.4: We use a one-layer perceptron with four output units to classify
the given acoustical alarm signals.

from other points. An input vector which, e.g., belongs to the class of bells,
is correctly detected if the output of the first neuron is positive, and all other
neurons produce negative outputs. Thus, the regions in space assigned to the
corresponding classes, each results from the intersection of four half-spaces,
one half-space for every hyperplane.3

The question now arises, how to place the hyperplanes in space in order to
separate the classes in an “optimal” way, given the points in space, or, stated
differently, how can the one-layer perceptron learn to adjust the weights of
the individual neurons in order to correctly separate the different classes with
hyperplanes. We cite a paragraph of [8, p. 10], where the notion of perceptron

3If a point falls outside all interesting intersections, e.g., if for a given input two neurons
produce a positive output value, the one with the highest value is selected.
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is equivalent to the neuron introduced above:4

There are numerous learning algorithms for the perceptron. Most of
them were developed in the 1960s. They include the perceptron learning al-
gorithm [118] ( [46] in our list), the Least Mean Squares (LMS) learning
algorithm [149] ( [47] in our list), and many others [28, 134] ( [48, 49] in
our list). For the most part, the details of these algorithms are beyond the
scope of this article. The LMS algorithm, however, is a special case of the
backpropagation learning algorithm (for multilayer perceptrons), and will be
discussed shortly.

Hush and Horne give an excellent review of the back-propagation al-
gorithm in [8, pp. 12–14]. We use this algorithm to train the network paramet-
ers for our classification task. The algorithm is implemented in the Neuro-
Basic simulator, and runs on the MUSIC parallel computer [50] (see also
Appendix A).

At this point, we can answer the two last questions posed on page 113.
From simulations (see the classification error rates listed in Chapter 8), we can
state that it is possible to separate the points in space with “straight lines”, i.e.,
with hyperplanes. Furthermore, the clusters, or, clouds of points, are well-
behaved like the example in Figure 7.1(a): the points which belong to one
class are in the same cloud such that no clusters need to be assembled like
in Figure 7.1(b). Thus, the four hyperplanes placed by the back-propagation
algorithm in space, one for every neuron in the one-layer perceptron of Fig-
ure 7.4, are sufficient to separate the four classes of acoustical alarm signals.

Actually, one could think that it might be sufficient to introduce only two
hyperplanes in space to divide it into four regions, one region for every class.5

From simulations it can be shown that the classification error rates are then
increased by approximately a factor of two compared to the results achieved
with four output units. This happens because the resulting four regions are too
wide, i.e., two hyperplanes do not sufficiently restrict the regions assigned to
the four classes.

4An algorithm which determines the parameter values of the neuron can also be used to set
the weights of the four neurons in Figure 7.4, because they work independently of each other,
and therefore the weights can be determined by applying the learning algorithm to the individual
neurons.

5See Chapter 3: if the number of hyperplanes (in general position) is less than or equal to the
dimension of the space, the number of regions the space is divided into is two to the power of the
number of hyperplanes.
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Hence, we wish that the classification device generalizes as well as pos-
sible, but not too “generously”. The back-propagation algorithm adjusts the
weights of the perceptron in order to place the hyperplanes “around” a given
set of points, the so-called training set, accordingly to a squared-error cri-
terion [8, 40], and given these specific points which are used to train the net-
work. The regions which are determined by the algorithm should, on the one
hand, separate the given points without any misclassification, or, at least, with
few errors, and, on the other, be as wide as possible in order to allow further
points to fall into the correct regions. Thus, there is a trade-off between the
exact specification of the region which is assigned to a class given the training
set, and the openness to further points which do not form part of the training
set. Again, from simulations, it can be shown that, on the one hand, the subset
of the characteristic images used to train the perceptron (see Chapter 8) can be
perfectly separated with the simple structure shown in Figure 7.4, and that, on
the other hand, the introduction of further hyperplanes, e.g., with a two-layer
perceptron [8], deteriorates the generalization capability of the classification
device.

7.3 Summary

The task of classifying the acoustical alarm signals under consideration has
been transferred into an image classification task by the binaural-chip trans-
formation and the CNN processing algorithms. The characteristic images of
the alarm signals can be interpreted as points in space, where the (binary) pixel
values determine the coordinates of the points. This mapping has the property
that similar images are mapped onto close points in space. Thus, the classific-
ation of the signals is performed by separating clusters of points in space.

From simulations, it can be shown that four hyperplanes are sufficient to
separate the four clusters, i.e., the classes bell, horn, phone and ring. The hy-
perplanes are realized by a one-layer perceptron with four output units: the
weights of the four neurons determine the hyperplanes, and they can be ad-
justed with the back-propagation algorithm in order to fulfill a given error cri-
terion in an optimal way for the training set, i.e., for a given set of points. The
corresponding error can be made smaller by introducing more hyperplanes in
space with a more complicated classification device, but then the generaliza-
tion capability deteriorates: the regions attached to the given classes become
too narrow so that points which were not used to place the hyperplanes in
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space may fall too far away from the correct regions.



Chapter 8

Results

In this chapter, we list the error rates achieved for the classification of the
acoustical alarm signals under consideration. The results were computed for
different parameter settings of the binaural-chip model, and for the three CNN
processing algorithms presented in Chapter 6. We used a one-layer perceptron
with four output units (see Chapter 7) as the classification device.
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8.1 Classification Skills of People

Before we give the classification error rates achieved by our system, we
address the question of the classification skills of people with normal hearing
[42]. The test conditions for people and for the classifier were not the same,
and, therefore, the test results may not be compared one–to–one. For example,
the acoustical alarm signals under consideration are real-life signals, and it is
difficult to quantify the amount of time which the test subjects had been trained
to distinguish the signals: not all may have lived for the same length of time
in Zurich or be equally familiar with Zurich’s tram bells.1 Additionally, long
tests would be an unreasonable demand on a single test subject. Therefore, the
classification skills of people were averaged over 14 volunteers which made
the tests under the same conditions:

Every person had to classify 32 randomly chosen signals. 16 sig-
nals had been sampled in CD-quality,2 i.e., with a sampling frequency
fs = 44.1kHz and 16-bit resolution, and the other 16 signals with the
lower sampling frequency fs = 8192Hz, and stored as 8-bit µ-law en-
coded data (see Section 4.2).

A signal could not be replayed, and there was no classification option
“unknown”.

Table 8.1 lists the results for the classification error rates of the 14 volun-
teers. From these results we can state the following: people did not classify

sampling data in bell horn phone ring total
CD-quality 4% 0% 0% 5% 2%
lower quality 2% 0% 0% 45% 12%

Table 8.1: Classification error rates of healthy people [42]

with a zero error rate. The quality of the signals, i.e., the sampling quality, af-
fected the classification. Apparently, the recognition of car horns and phones
did not seem to pose any problems for people.

One could think that tram bells and tram rings are mixed up, because the
source of these two classes of acoustical alarm signals is the same, and the

1The acoustical alarm signals under consideration were recorded in Zurich.
2CD stands for Compact Disc.
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only difference is in the rapid repetition of the “same” sound in the class of
rings. Yet, misclassifications of ring signals were also due to wrong detections
of phone signals, i.e., misclassifications cannot be explained only by isolating
the classes where trams are involved.

8.2 Unifying the Test Conditions

In order to be able to compare the classification error rates achieved by
CNNs with the error rates published in [30] and [31], we decided to train our
classification device with a training set of the same size as in [31]. Table 8.2
lists how many signals of every class were used in order to determine the

class # signals # signals total
for training for testing # signals

tram bells 52 5 57
car horns 57 6 63
phones 50 5 55
tram rings 27 3 30
all classes 186 19 205

Table 8.2: Number of signals used to train the classification device: approx-
imately 90% of the signals of every class were used to train the one-layer
perceptron. The remaining signals formed the test set.

weights of the one-layer perceptron introduced in Chapter 7.3 The signals
which were not used in the training set, i.e., ≈ 10% of the signals, served as
test signals for the classification task. The really interesting results are the
classification error rates achieved for the test signals, because they tell us how
well the classification works for “unknown” samples of the acoustical alarm
signals.

The 186 signals of the training set were chosen randomly out of the total
set of 205 acoustical alarm signals. As in [31], we averaged the classification
error rates over 30 runs, where in every run a new training set was randomly
chosen. However, we could see that 30 runs were not sufficient to produce

3The 1-D to 2-D transformation performed by the binaural chip, and the CNN processing
algorithms, did not need to be trained to solve their tasks. They used the a priori knowledge
needed for their design.
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reliable results, i.e., the number of misclassified test signals varied approx-
imately 4% (≈ 23/(30 ·19)) depending on the 30 ·186 training signals which
were chosen during the 30 runs. In order to compare the classification er-
ror rates achieved for different parameter settings of the binaural-chip model
(see Section 5.1), and for the three CNN processing algorithms presented in
Chapter 6, we fixed 30 training/test pairs, and averaged the performance of
the three CNN processing algorithms for different parameter settings of the
binaural-chip model over these 30 “unified”, or, normalized, training/test pairs.
Since other classification methods may be compared with the one presented
in this thesis, we list in Table 8.3 the signals which we randomly chose as
test signals in the 30 runs. Thus, all results given hereafter can be compared
with each other, because they have been computed using the same training/test
pairs.
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run bell horn
1 9 10 12 20 23 5 23 31 36 47 58
2 10 30 36 47 56 9 35 38 52 54 56
3 4 10 27 39 50 17 33 34 35 54 57
4 4 18 27 28 48 20 21 48 50 53 60
5 16 30 34 37 44 8 35 42 51 54 61
6 1 7 15 28 31 6 31 33 53 59 62
7 1 23 25 26 33 4 10 16 27 31 53
8 6 8 13 22 24 12 14 24 27 50 62
9 1 4 11 16 45 2 4 26 27 44 60

10 12 15 42 49 55 2 5 13 26 38 42
11 10 12 37 42 53 2 37 43 47 60 63
12 21 24 27 31 44 15 19 32 38 57 61
13 5 9 10 23 48 4 19 40 43 52 57
14 3 14 16 20 39 2 4 9 11 16 41
15 5 6 7 13 14 24 26 29 35 36 54
16 7 11 25 32 37 9 12 49 51 57 59
17 19 22 25 31 44 24 31 33 34 39 43
18 20 23 24 41 45 2 11 19 31 41 58
19 5 9 10 21 26 15 27 33 57 61 62
20 8 9 12 14 27 20 23 36 51 59 60
21 7 32 36 41 52 7 17 18 21 38 48
22 12 14 31 35 38 26 41 43 50 61 63
23 13 24 33 40 53 15 18 28 34 54 63
24 1 12 28 48 49 13 14 17 26 32 39
25 1 15 21 42 51 12 14 31 39 45 47
26 21 36 42 43 53 19 32 39 52 54 60
27 26 48 51 54 57 13 16 23 35 39 40
28 10 18 37 43 52 3 31 45 55 61 62
29 17 23 25 26 28 14 15 24 37 45 63
30 37 38 40 44 57 1 10 15 27 31 48

Table 8.3: Labels of the test signals used in the 30 runs, classes bell and horn
(see next page for classes phone and ring)
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run phone ring
1 2 12 23 30 39 15 17 20
2 18 23 48 53 55 19 22 25
3 8 16 17 40 42 2 7 16
4 4 12 14 21 35 6 9 14
5 2 17 18 26 42 8 10 20
6 3 5 7 43 44 4 5 23
7 3 11 16 35 50 4 12 25
8 14 20 23 26 28 23 27 30
9 6 19 22 29 48 4 19 25

10 1 4 29 50 53 18 21 24
11 8 15 24 29 46 20 21 25
12 3 4 8 24 40 10 29 30
13 5 8 13 37 53 9 24 26
14 20 23 43 49 52 1 14 18
15 16 21 33 36 38 8 26 29
16 16 20 24 27 40 13 18 22
17 9 21 22 23 28 1 19 24
18 5 20 26 34 40 13 20 22
19 14 21 27 34 37 5 13 24
20 13 35 36 50 52 22 23 26
21 1 3 10 14 45 2 6 27
22 8 28 32 37 50 14 22 28
23 13 17 25 44 51 18 19 26
24 13 14 24 36 54 24 25 29
25 29 30 31 39 54 9 16 25
26 25 32 39 44 50 17 20 22
27 9 34 35 44 51 6 7 28
28 7 8 14 36 41 4 6 22
29 2 7 20 27 41 3 10 16
30 20 29 39 43 50 1 8 11

Table 8.3: (Continued) Labels of the test signals used in the 30 runs, classes
phone and ring
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8.3 Parameter Settings of the Binaural-Chip
Model

For the simulations whose results we present, we used the acoustical alarm
signals under consideration, sampled at a rate of fs = 8 kHz with 8-bit µ-law
encoded resolution. The signal quality which results from this sampling pro-
cedure is the one which can be retained in a future analogue realization of
the classification system. The different parameter settings we used for the
binaural-chip model are given in Table 8.4. Every column of Table 8.4 con-

parameter Setting 1 Setting 2 Setting 3
filters 64 64 128
fu [Hz] 100 100 100
fo [Hz] 3750 3750 3750
q 1 1 1
fs [Hz] 8192 8192 8192
r 32 64 32
threshold 0.05 0.05 0.05

Table 8.4: Different parameter settings of the binaural-chip model (see also
Table 5.1 on page 63)

tains the parameter values of one setting. Setting 1 corresponds to the values
given on page 64, i.e., these are the parameter values which were used to pro-
duce the output images shown in Section 5.1. Setting 2, compared to Setting 1,
doubles the rate at which the images are produced in order to exploit the fre-
quency/time trade-off discussed in Section 5.1.2. Lastly, Setting 3 exploits the
frequency/time trade-off by doubling the number of filters in the model of the
basilar membrane, instead of increasing the rate r.

8.4 Classification Error Rates of the Training Set

Tables 8.5 to 8.7 list the classification error rates of the training set
achieved with Processing Algorithms 1 to 3 (see Sections 6.1.1 to 6.1.3, re-
spectively) for Settings 1 to 3 (see previous section). The results were com-
puted taking into consideration d−1 pixels at the right-hand side of the diag-
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CNN
d Processing bell horn phone ring total

Algorithm
1 0% 0% 0% 0% 0%

18 2 0% 0% 0% 0% 0%
3 0% 0% 0% 0% 0%
1 0% 0% 0% 0% 0%

K 2 0% 0% 0% 0% 0%
3 0% 0% 0% 0% 0%

Table 8.5: Classification error rates of the training set for Processing Al-
gorithms 1 to 3, Setting 1

CNN
d Processing bell horn phone ring total

Algorithm
1 0% 0% 0% 0% 0%

18 2 0% 0% 0% 0% 0%
3 0% 0% 0% 0% 0%
1 0% 0% 0% 0% 0%

K 2 0% 0% 0% 0% 0%
3 0% 0% 0% 0% 0%

Table 8.6: Classification error rates of the training set for Processing Al-
gorithms 1 to 3, Setting 2

CNN
d Processing bell horn phone ring total

Algorithm
1 0% 0% 0% 2% 0%

37 2 0% 0% 0% 1% 0%
3 0% 0% 0% 1% 0%
1 0% 0% 0% 0% 0%

K 2 0% 0% 0% 0% 0%
3 0% 0% 0% 1% 0%

Table 8.7: Classification error rates of the training set for Processing Al-
gorithms 1 to 3, Setting 3
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onal (see page 114).4 Thus, in the case of d 6= K, the classification device, i.e.,
the one-layer perceptron, was trained using only (approximately) half of the
non-repeated pixels of the characteristic images (see Figure 7.2).

From the results listed in Tables 8.5 to 8.7, we can state that the one-layer
perceptron with four output units (see Section 7.2) is able to separate the points
of the training set with a negligible number of errors.

8.5 Classification Error Rates of the Test Set

In this section, we list the classification error rates of the test set.5 These
are the results which tell us how good the performance of our alarm-signal
classification system with CNNs is, i.e., how well it works for new acoustical
alarm signals. Thus, analogously to the previous section, we list in Tables 8.8
to 8.10 the classification error rates of the test set achieved with Processing
Algorithms 1 to 3 for Settings 1 to 3, i.e., for the three parameter settings of
the binaural-chip model given in Table 8.4. Again, d was chosen such that
either (approximately) half of all,6 or, in the case of d = K, all, non-repeated
pixels of the characteristic images were considered.

CNN
d Processing bell horn phone ring total

Algorithm
1 22% 3% 5% 40% 15%

18 2 21% 2% 3% 24% 11%
3 15% 1% 1% 32% 10%
1 21% 6% 1% 48% 15%

K 2 21% 2% 3% 24% 11%
3 17% 1% 1% 32% 10%

Table 8.8: Classification error rates of the test set for Processing Algorithms 1
to 3, Setting 1

4Actually, d = K means that all non-repeated pixels of the characteristic images were taken
into consideration.

5Again, see Section 8.2, the results presented in this chapter are the classification error rates
averaged over 30 runs.

6See Figure 7.2
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CNN
d Processing bell horn phone ring total

Algorithm
1 32% 13% 11% 39% 22%

18 2 13% 0% 1% 28% 8%
3 17% 1% 5% 30% 11%
1 26% 10% 5% 36% 17%

K 2 14% 0% 1% 27% 8%
3 15% 1% 5% 33% 11%

Table 8.9: Classification error rates of the test set for Processing Algorithms 1
to 3, Setting 2

CNN
d Processing bell horn phone ring total

Algorithm
1 21% 14% 1% 31% 15%

37 2 11% 3% 4% 26% 9%
3 9% 1% 4% 26% 8%
1 19% 14% 2% 29% 15%

K 2 11% 2% 4% 23% 8%
3 10% 1% 4% 26% 8%

Table 8.10: Classification error rates of the test set for Processing Al-
gorithms 1 to 3, Setting 3
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8.6 Summary

In order to be able to evaluate the error rates achieved with our system,
we presented some results concerning the classification skills of people with
normal hearing in the first section of this chapter. One cannot compare one–
to–one the classification error rates averaged over the 14 test subjects with
the results of the simulations, because the test conditions were not equivalent.
Nevertheless, we can make the following qualitative statements: people did
misclassify a part of the signals, the number of classification errors grew for
lower signal quality, and all car horns and phones were recognized as such.

The second section of this chapter lists the randomly chosen test signals
which were used to average the classification error rates over 30 runs. The
resulting unified training/test pairs allow the comparison of other classification
methods with the one presented in this thesis.

In the next section, we listed three different parameter settings of the
binaural-chip model. The classification error rates given in the last sections
of this chapter were computed for these three parameter settings.

The classification error rates of the training set were nearly 0%. This means
that a simple one-layer perceptron with four output units managed to separate
the points of the training set without making (hardly) any errors.

The classification error rates of the test set give us a measure, how well our
classification system works, because it has to prove that it recognizes signals
it has never been confronted with before. The results will be commented on in
the next chapter.





Chapter 9

Conclusions

In the last chapter of this thesis, we comment on the results achieved with
our system for the classification of the given acoustical alarm signals. We
compare the performance with that of other schemes, and list some concluding
remarks.
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9.1 CNNs for the Classification of Acoustical
Alarm Signals

In the second part of this thesis, we investigated the following question:

Are CNNs generally suitable for the processing of non-stationary signals?

In order to be able to answer this question, we decided to solve an acoustical
alarm-signal classification problem by using CNNs. The non-stationary acous-
tical alarm signals belong to four different sets (see Table 4.1 on page 55).

Since the signals under consideration are acoustical signals, they first had
to be transformed into images in order to process them with CNNs. We chose
a phase-preserving transformation which can be performed in real-time by an
existing analogue device, the so-called binaural chip (see Section 5.1). Fur-
thermore, the transformation performed by the binaural chip can be realized
by an analogue device based on CNNs: the part of the binaural chip which
models the basilar membrane, i.e., the filter cascade of second-order low-pass
filters, can be realized by CNNs which are operated as dynamical systems,
and not as mapping devices as in image processing (see Section 5.2). Thus,
the preprocessing stage needed to transform the acoustical alarm signals into
images may well be realized using CNNs.

The transformation of the acoustical signals into images provided a series
of images for every signal. The image-processing capabilities of CNNs were
exploited in order to extract meaningful patterns from every image of the se-
quence for a given signal. In Chapter 6, three CNN processing algorithms
were presented, which, by performing a simple time–to–space mapping with
an OR-combination, generated a single characteristic image for every given
acoustical alarm signal. Thus, the idea of using CNNs for the classification
of the given non-stationary signals was to transform the problem into one of
image classification.

The classification of the characteristic images produced by the CNN pro-
cessing algorithms was performed by a one-layer perceptron with four output
units (see Chapter 7). This simple classification device solved the task, be-
cause the images fulfilled the following requirements: characteristic images of
signals from the same class were similar, and characteristic images of signals
from different classes were distinct from the point of view of the classifier.
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Thus, the CNN was able to process the images provided by the 1-D to 2-D
transformation such that a one-layer perceptron was sufficient to solve the res-
ulting image-classification problem.

9.2 Commenting Our Results

In this section, we list some comments on the results given in Section 8.5,
i.e., on the classification error rates of the test set achieved for different
parameter settings of the binaural-chip model, different CNN processing al-
gorithms, and considering either (approximately) half, or all, non-repeated
pixels of the characteristic images.

Generally, signals from the classes horn and phone were better recog-
nized than signals from the classes bell and ring. The worst recognition
rates were those for the class of rings. This corresponds to the beha-
viour observed for healthy people (see Section 8.1). Thus, our system
encountered the same difficulties as people. Especially, signals from the
class of rings lead to most errors. For our system one might argue that
this is due to the smaller set, i.e., only 27 signals from the class of rings
were available to train the classification device, approximately half the
number for the other classes (see Table 8.2). For people, this argument
may not be valid, since there is no obvious reason for tram rings to be
less known than other alarm signals. Thus, for the given system, the
reason given above, i.e., that the training set for the class of rings might
not be sufficiently large, is not a satisfactory answer to the question why
rings are harder to classify than the other acoustical alarm signals. We
believe our system is not particularly ill-suited to classify signals from
the class of rings, but rather that the nature of these signals leads to
unclear class-specific features.

The similar behaviour of our system and the classification skills of
people might not be very surprising since our system uses as a pre-
processing device a model of the basilar membrane (see Section 5.1).

We presented in Sections 6.1.1 to 6.1.3 three CNN processing al-
gorithms. Our simulations showed that the most complicated (Pro-
cessing Algorithm 1) is the one that gave the worst classification er-
ror rates. From the point of view of a system realization this is a pos-
itive result, since the problem should be solved with as little effort as
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possible. For certain parameter settings of the binaural-chip model,
Processing Algorithm 2 gave the best results, at the cost of needing
two image-processing steps, one of which uses the nonlinear gradi-
ent template given in Table 6.4. On the other hand, there were cases
where the simple Processing Algorithm 3, which needs only one image-
processing step with an easily realizable linear template (see Table 6.6
on page 102), achieved the lowest classification error rates. Thus, we
could show that the use of nonlinear templates does not necessarily
lead to higher recognition rates.

The choice of considering only a reduced number of pixels for the
image-classification task (see Figure 7.2 on page 115) was motivated
by the fact that for Processing Algorithms 2 and 3 most black pixels of
the characteristic images lie along the diagonal (see for example Fig-
ures 6.11 and 6.17, respectively). With only one exception (Table 8.10,
Processing Algorithm 2), the total classification error rates of Pro-
cessing Algorithms 2 and 3 did not increase by reducing the number
of considered pixels by (approximately) a factor of two.1

Since the black pixels of the images produced by Processing Al-
gorithm 1 are generally not concentrated along the diagonal (see Fig-
ure 6.5), one would expect a clearly worse behaviour in the case of
a reduced number of pixels. This can be stated only for Setting 2
(Table 8.9), where the performance decreased by 5%. Thus, in gen-
eral, the given reduction of the number of considered pixels did not lead
to higher classification error rates.

Setting 2 differs from Setting 1 in that the rate r at which the binaural-
chip model produces the series of images is twice as high. This leads
to a deterioration of the classification performance for Processing Al-
gorithms 1 and 3 (up to 7%, and 1%, respectively). Thus, increasing
the rate of image flow does not necessarily produce better results for
these CNN processing algorithms. On the other hand, the results for
Processing Algorithm 2 could be improved in order to reach a classific-
ation error rate of 8%.

Setting 3 increases the amount of data which is processed with the
CNN by increasing the image resolution, i.e., by doubling the num-
ber of filters in the cascade which models the basilar membrane. The

1The error rate of Processing Algorithm 2, Setting 3, increased from 8% to 9%, which, in our
opinion, is a negligible difference.
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128× 128 pixel images are at the upper realization limit for an ana-
logue implementation (see page 85). The classification rates could be
improved for Processing Algorithms 2 and 3 in order to achieve, again,
a classification error rate of 8%.

In summary, one is faced with a compromise: our system achieves an
error rate of 8% for the classification of the given acoustical signals
either by increasing the rate at which the binaural-chip model produces
the two-dimensional representation of the acoustical alarm signals, and
using a more complicated CNN processing algorithm (Processing Al-
gorithm 2), or by increasing the image resolution, where then a simple
template can be applied (Processing Algorithm 3). Since the processing
speed of an analogue CNN chip is sufficiently high, and the image resol-
ution of Setting 2 is 64×64, i.e., nearly the one of the existing binaural
chip,2 the first solution might be chosen for a chip implementation of
our classification system. Of course, the best would be to reach a classi-
fication performance of 8% or less errors with a simple linear template
for this low image resolution: the results for Processing Algorithm 3
might be improved by tuning the square template in order to better ex-
tract the patterns of the image series produced with Settings 1 and 2 (see
below).

9.3 Comparison with the Performance of Other
Schemes

In order to evaluate the performance of our classification system, we
presented in Section 8.1 some classification results for people with normal
hearing, and we saw that the test subjects did not classify with a zero error
rate.

It is also interesting to compare the performance of our system with the
results achieved by other schemes. Table 9.1 summarizes the classification
error rates achieved in [30] and [31]. The classification error rates achieved
with the system presented in this thesis could clearly improve these results.

Recently, the classification problem was also solved by using Hidden
Markov Models (HMMs) and a maximum likelihood classifier [51]. The ob-

2With a resolution of 56×56.
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Scheme Classification Method Results for the Test Set

Spectral Minimum-Distance 22%
Techniques [30]
Neural Networks [31] Perceptron 22%

Masking Field 19%

Table 9.1: Classification error rates of other schemes

servation probability density function of each class was modelled by a four-
state HMM. The results listed in Table 9.2 can be compared one–to–one to the

Scheme bell horn phone ring total

HMM (4 states) 7% 11% 0% 12% 7%

Table 9.2: Classification error rates achieved with HMMs [51]

results given in Section 8.5, because all were obtained by using the unified test
signals listed in Table 8.3.

Two remarks should be made with regard to these results:

Compared to our results, the better classification achieved with HMMs
for signals from the class of rings is deteriorated by a worse perform-
ance in the classification of horns.

The good overall performance achieved with HMMs gives the present
benchmark for the classification error rate: 7%. We achieve with our
system 8% in five cases (see Tables 8.9 and 8.10). Thus, the classifica-
tion of the given alarm signals can be performed by CNNs without any
serious performance loss. Therefore, we could demonstrate that CNNs
are suited to process non-stationary signals, especially acoustical sig-
nals. This may smooth the way for further investigations in the field of
speech recognition with CNNs.
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9.4 Suggestions for Further Work

Our simulations require high storage capacities and high computation
power, since a large amount of images is produced and has to be processed. We
did not run simulations for all possible combinations of the parameter values of
the binaural-chip model. Apart from the settings given in Table 8.4, we invest-
igated other reasonable values for the parameters of the binaural-chip model,
but no better classification error rates could be found. Another possibility is
to tune the template values for the CNN processing algorithms, e.g. the shape
of the nonlinearity of the gradient template, or the location of the straight line
which defines the behaviour of the square template (see Figure 6.15). As disk
space becomes cheaper and computers faster, a more complete test series may
be run, and better results might be observed.

In our opinion, it is more important to realize the image classification,
i.e., the task performed by the one-layer perceptron, with CNNs. This would
allow to incorporate the whole system into an analogue chip based on CNNs.
Discrete-time CNNs [9] have been applied to texture classification [52]. The
difficulty of realizing an image-classification device based on analogue CNNs
is to determine the appropriate templates.

9.5 Summary

We have shown that it is possible to perform the given classification task
by using CNNs. Nonetheless, an appropriate transformation of the acoustical
alarm signals had to be found in order to provide images as input to the CNN.
The idea of using CNNs for the classification of the given acoustical alarm
signals was to transform the problem into one of image classification. The
CNN processed a series of images in order to produce a characteristic image
for every acoustical alarm signal. The classification of the characteristic im-
ages was performed by a one-layer perceptron with four output units. It was
shown that the phase-preserving transformation of the acoustical signals to
a 2-D representation might well be performed with a CNN-like structure by
realizing second-order low-pass filters with CNNs for the model of the basilar
membrane. The whole classification system cannot yet be realized entirely
with CNNs, because the image classification is performed with a perceptron.

The solution presented in the second part of this thesis might be realized
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as an analogue chip based on the CNN structure when the first programmable
CNN chips with a sufficient number of cells appear. Then, the advantages of
analogue techniques, i.e., low power consumption at high processing speeds,
might be used to provide sophisticated aids for the hearing impaired.



Appendix A

Simulation Tools

This appendix is split into two parts. In the first, we present the MATLAB
model of the binaural chip. The second part deals with our simulator of CNNs
which runs on a multiprocessor system, i.e., on a parallel computer.
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A.1 The Model of the Binaural Chip

We built a simulator for the binaural chip with the MATLAB package for
numeric computation [53]. This package has given us a flexible and easy–to–
use tool for a fast implementation of the binaural-chip model. The sampled
acoustical alarm signals serve as input to the model which, in turn, produces
the required input images for the CNN. Thus, the MATLAB model implements
the two basic building blocks of the binaural chip: the model of the basilar
membrane, i.e., the filter cascade (see page 58), and the two-dimensional cor-
relation (see page 60).

The following parameters control the behaviour of the binaural-chip model
(see also Table 5.1 on page 63):

filters specifies the number of filters the cascade consists of

fu and fo set the lower and upper pole frequencies fl and fu, re-
spectively, of the filter cascade (see equations (5.2) on
page 59) 1

q is the quality factor qp of the low-pass filters (see equa-
tion (5.1))

fs specifies the sampling frequency, i.e., the frequency the
alarm signals were sampled with

r sets the image rate (in images per second)

threshold controls the sensitivity of the basilar membrane model:
excitations on the basilar membrane which are smaller
than this threshold value are cancelled

The MATLAB program is split into two independent parts. The first models
the binaural chip, and the second transforms the output data of the model into
GIF images (Graphics Interchange Format).

1fu and fo stand for lower and upper pole frequencies, respectively, from German untere
und obere Polfrequenz.
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A.1.1 The programs of the binaural-chip model

The MATLAB model of the binaural chip consists of six short files.
Table A.1 lists them and gives a short description of their contents. The code
is given on the next pages.

prodbin.m main program
calls readalarm8kHz, binauralchip,
and writebcsequence
The input signal is split into several parts to
avoid large matrices and swapping or other
memory problems on the computer.

readalarm8kHz.m reads files which contain 8-bit µ-law encoded
acoustical (alarm) signals sampled at 8 kHz

binauralchip.m produces the output of the binaural chip
This file calls travelingwave.m which,
in turn, calls cascade.m. These files
model the first building block of the binaural
chip, namely the basilar membrane.
Finally, binauralchip.m performs
the correlation after noise cancellation
with a threshold value (see above).

travelingwave.m computes the traveling wave on the basilar
membrane (see Figure 5.2 on page 60)

cascade.m generates a filter cascade to model the
basilar membrane

writebcsequence.m writes the images which come out of the
binaural-chip model to a file in binary format

Table A.1: MATLAB’s m-files for the binaural-chip model
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prodbin.m

%
% Matlab script for the model of the
%
% B I N A U R A L C H I P
%
% audio base: Uvacek’s alarm signals
% (57 bell, 63 horn,
% 55 phone, and 30 ring signals)
% sampling frequency fs=8192Hz
%
% This main program produces files which contain the output
% images of the binaural chip in binary format.
%
% See also readalarm8kHz, binauralchip, writebcsequence.
%
% J.A. Osuna, 16.12.1994

%--------------------------------------------------------------------

% constants

dirsound = ’/disks/isibee17/osuna/cnn/SoundsCD/’;
dirbin = ’/disks/isibee17/osuna/cnn/matlab/bin/’;

eightkilohertz=1; % boolean, used to choose the sampling
% frequency fs

% initializations

if eightkilohertz
dirsound = ’/disks/isibee17/osuna/cnn/Sounds/’;

fs = 8192; % sampling rate 8 kHz
r = 32;

end

%--------------------------------------------------------------------

% main program

for i=1:30
for k=1:4

if k == 1
class = ’horn’;
name = ’h’;

elseif k == 2
class = ’bell’;
name = ’b’;

elseif k == 3
class = ’phone’;
name = ’p’;

else
class = ’ring’;
name = ’r’;

end
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if eightkilohertz
u=readalarm8kHz([dirsound class ...

’/y’ class num2str(i) ’.sound’]);
end
lengthu = length(u);
maxlengthpartu = min([fs/gcd(fs,r) lengthu]’);

partu = ceil(lengthu/maxlengthpartu);
partubegin = zeros(partu,1);
partuend = zeros(partu,1);
for m=1:(partu-1)

partubegin(m) = (m-1)*maxlengthpartu+1;
partuend(m) = m*maxlengthpartu;

end
partubegin(partu) = (partu-1)*maxlengthpartu+1;
partuend(partu) = lengthu;

for m=1:partu
if partu==1
seq = binauralchip(u(partubegin(m):partuend(m)),...

fs,r,0,[],[]);
else
if m==1

[seq,Zf,h] = ...
binauralchip(u(partubegin(m):partuend(m)),fs,r,m,[],[]);

else
[seq,Zf,h] = ...
binauralchip(u(partubegin(m):partuend(m)),fs,r,m,Zf,h);

end
end
writebcsequence(seq,...

[dirbin class ’/’ class num2dig(i,2) ’.bin’],fs/r);
clear seq

end
end

end

% end of program "prodbin"
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readalarm8kHz.m

function y = readalarm8kHz(filename)
%
% y = readalarm8kHz(’filename’)
%
% readalarm8kHz reads the binary file "filename" which contains
% audio data and produces vector y which contains the
% sampled values
%
% the audio files are Uvacek’s four classes of
% alarm signals (phones, rings, bells and horns)
%
% audio specifications:
%
% 8kHz sampling rate (8192 Hz)
% 8-bit mu-law encoded (12 bits --> 8 bits)
%
% See also FOPEN, MU2LIN.
%
% J.A. Osuna, 16.12.1994

%--------------------------------------------------------------------

% initializations

FID = fopen(filename);

% function body

y8bit = fread(FID); % 8-bit compressed values
y = mu2lin(y8bit); % decompressed values

y = y/max(abs(y));

fclose(FID);

% end of function "readalarm8kHz"
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binauralchip.m

function [seq,Zf,h] = binauralchip(u,fs,r,part,Zf,h)
%
% [seq,Zf,h] = binauralchip(u,fs,r,part,Zf,h)
%
% binauralchip produces the output of the binaural chip as a
% sequence of images (default: r images / sec )
%
% u is (a segment of) the input signal
%
% fs sampling rate
%
% r images per second
%
% part segment # of the input signal
% if part=0, then u is the whole input signal
%
% seq is a matrix containing values
% between -1 (green) and 1 (red)
%
% - each column of seq corresponds to an image
% (integration of outputs produced at every
% sampling step during the time window of
% one image)
% - the columns of a binaural-chip image
% (KxK pixels, where K is the number of
% filters in the cascade which models the
% basilar membrane) form a column of seq
%
% Zf is the final condition (see FILTER)
% h the i-th row of h is the i-th digital filter
% (see cascade)
%
% See also travelingwave, cascade.
%
% J.A. Osuna, 16.12.1994

%--------------------------------------------------------------------

% initializations

ti = fs/r; % # pictures in 1/r seconds
lastframe = 0; % "frame"="image"

if part==0
y = travelingwave(u,fs,part,[],[]);

elseif part==1
[y,Zf,h] = travelingwave(u,fs,part,[],[]);

else
[y,Zf] = travelingwave(u,fs,part,Zf,h);

end
[filters,t] = size(y);
t = t/fs; % length of sound sequence [s]

numbframes = floor(t*r);

threshold = 0.05;
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% function body

if threshold==0
s = sign(y);
clear y % to avoid swapping for large y-matrices

else
s = sign(y);
A = abs(y)-threshold;
clear y % to avoid swapping for large y-matrices
s = sign( (A>0).*A ).*s;
clear A % to avoid swapping for large A-matrices

end %
% the following initialization comes
% here to avoid swapping

seq = zeros(filters^2,numbframes);
% each column of seq contains an
% image of the binaural-chip output
% sequence

for j=1:numbframes
frame = ti*j;
fig = s(:,(lastframe+1):frame)*s(:,(lastframe+1):frame)’;
lastframe = frame;
seq(:,j) = fig(:);

end

% end of function "binauralchip"
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travelingwave.m

function [y,Zf,h] = travelingwave(u,fs,part,Zi,h)
%
% [y,Zf,h] = travelingwave(u,fs,part,Zi,h)
%
% travelingwave stores the traveling wave along the basilar
% membrane in matrix y
%
% Row y_i contains the filter output for filter i,
% where i=1 is the low-pass filter with the highest
% pole frequency.
%
% u is (a segment of) the input signal
%
% fs is the sampling frequency
%
% part is the segment # of the input signal
% if part=0, then u is the whole input signal
%
% Zf is the final condition (see FILTER)
% Zi is the initial condition
%
% h the i-th row of h is the i-th digital filter
% (see cascade)
%
% See also cascade, FILTER.
%
% J.A. Osuna, 16.12.1994

%--------------------------------------------------------------------

% constants

filters = 128; % for comments see "cascade.m"
fu = 100; %
fo = 3750; %
q = 1.0; % quality factor

% initializations

lengthu = length(u);
y = zeros(filters,lengthu);
input = u’;

if part==0
h = cascade(fu,fo,filters,q,fs);

elseif part==1
h = cascade(fu,fo,filters,q,fs);
Zf = zeros(2,filters);

end

% function body

for i=1:filters
if part==0

y(i,:) = filter(h(filters+1-i,1:3),h(filters+1-i,4:6),input);
elseif part==1

[y(i,:),Zf(:,i)] = ...
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filter(h(filters+1-i,1:3),h(filters+1-i,4:6),input);
else

[y(i,:),Zf(:,i)] = ...
filter(h(filters+1-i,1:3),h(filters+1-i,4:6),input,Zi(:,i));

end
input = y(i,:);

end

% end of function "travelingwave"

writebcsequence.m

function writebcsequence(A,filename,maxabs)
%
% writebcsequence(A,’filename’,maxabs)
%
% writebcsequence writes the sequence of binaural-chip output
% images stored in matrix A on "filename"
%
% - each column of A corresponds to an image
% - the columns of a binaural-chip output
% image form a column of A
%
% maxabs corresponds to the # samples in
% the integration time interval
%
% See also binauralchip.
%
% J.A. Osuna, 16.12.1994

%--------------------------------------------------------------------

% initializations

FID = fopen(filename,’a’);

% function body

vals = round((A/maxabs+1)*127.5)-128; % -1 <= A/maxabs <= 1
fwrite(FID,vals,’int8’); % binary values stored as 8-bit

% integers

fclose(FID);

% end of function "writebcsequence"
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cascade.m

function hd = cascade(fu,fo,filters,q,fs)
%
% hd = cascade(fu,fo,filters,q,fs)
%
% cascade generates a filter bank of second-order filters which
% are equally spaced in log scale.
%
% fu determines the lower frequency [Hz]
% fo determines the upper frequency [Hz]
%
% filters is the number of equally-spaced filters
% within fu and fo
%
% q is the quality factor (the same for all filters)
%
% fs is the sampling frequency of the digital system
%
% hd is a matrix whose rows y_i = [num_i den_i] contain
% the numerator and denominator of the i-th digital
% filter
% numerator: [b1 b2 b3], b1+b2*z^(-1)+b3*z^(-2)
% denominator: [a1 a2 a3], a1+a2*z^(-1)+a3*z^(-2)
%
% See also BILINEAR.
%
% J.A. Osuna, 16.12.1994

%--------------------------------------------------------------------

% initializations

Ts = 1/fs; % fs: sampling frequency

numd = zeros(filters,3); % numd: numerator of the digital filters
dend = zeros(filters,3); % dend: denominator of the digital filters

% numd & dend are both matrices:
% #rows = #filters (one row per filter)
% #columns = filter order = 3

logdistance = ( log10(fo) - log10(fu) )/filters;

% function body

fi = 10.^( [0:filters]*logdistance + log10(fu)*ones(1,filters+1) );

% fi is a row vector of size filters+1 containing all points in the
% f-axis [Hz] which delimit the in log scale equally-spaced
% regions (number of regions = filters = K)
%
% T(s) = 1/( s^2/op^2 + 1/(op*qp)*s + 1 ) ; qp = quality factor
% op = pole frequency
%
% The second-order low-pass filters have their pole frequencies at
% the points fi (s-plain).
% Note: we take only K filters at the first K points specified in fi

op = 2*pi*fi(1:filters)’; % op stands for omega_p
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TPnum = [0 0 1]; % all filters in the s-domain have
% the same numerator

TPden = [1./op.^2 1./(op*q) ones(size(op),1)];

% Now, let’s apply the bilinear transformation:
% - same frequency response as in the s-plain (distortion only in
% the frequency axis)

od = 2/Ts*tan(Ts/2*op); % omega_d is the vector with the
% distorted pole frequencies
% for the bilinear transform

TPdend= [1./od.^2 1./(od*q) ones(size(od),1)];

for i=1:filters
[numd(i,:),dend(i,:)] = bilinear(TPnum,TPdend(i,:),fs);

end

hd=[numd dend];

% end of function "cascade"

A.1.2 Transformation to GIF images

The second part of the binaural-chip simulator transforms the output data
of the model into GIF images. This is performed by the four MATLAB files
listed in Table A.2. Their code is given in the following pages.

bin2gif.m main program
This file prepares the data for fram2gif.m.

readpbcseq.m reads the coded output data of
the binaural-chip model

fram2gif.m converts the coded images to GIF files
calls num2dig.m and uses the function
GIFWRITE from the image-processing toolbox
for the conversion to GIF files

num2dig.m formatting function for file names

Table A.2: MATLAB files to convert the binaural-chip output to GIF images
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bin2gif.m

%
% Matlab script to generate GIF files from the
% output files in binary format produced by the model of the
%
% B I N A U R A L C H I P
%
% audio base: Uvacek’s alarm signals
% (57 bell, 63 horn,
% 55 phone, and 30 ring signals)
%
% This main program produces GIF files from the binary files
% which contain the output images of the binaural chip.
%
% See also readpbcseq, fram2gif, prodbin.
%
% J.A. Osuna, 16.12.1994

%--------------------------------------------------------------------

% constants

maxpics = 2;

dirbin = ’/disks/isibee17/osuna/cnn/matlab/bin/’;
dirgif = ’/disks/isibee17/osuna/cnn/matlab/gif/’;

%--------------------------------------------------------------------

% main program

for i=1:30
for k=1:4

if k == 1
class = ’horn’;
name = ’h’;

elseif k == 2
class = ’bell’;
name = ’b’;

elseif k == 3
class = ’phone’;
name = ’p’;

else
class = ’ring’;
name = ’r’;

end

% first read the number of frames stored in the file
columns= 0;
seqnormtmp=1;
FID = fopen([dirbin class ’/’ class num2dig(i,2) ’.bin’]);
while seqnormtmp ~= []

seqnormtmp = readpbcseq(FID,maxpics);
[seqrows,seqcolumns] = size(seqnormtmp);
columns = columns+seqcolumns;

end
fclose(FID);
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count=0;
seqnorm=1;
FID = fopen([dirbin class ’/’ class num2dig(i,2) ’.bin’]);
while seqnorm ~= []

seqnorm = readpbcseq(FID,maxpics);
[seqrows,seqcolumns] = size(seqnorm);
fram2gif(seqnorm,[dirgif class ’/’ name num2dig(i,2)],...

(1:seqcolumns)+count*maxpics,ceil(log10(columns+1)));
count = count + 1;

end
fclose(FID);

end
end

% end of program "bin2gif"

readpbcseq.m

function A = readpbcseq(FID,numbpics)
%
% A = readpbcseq(FID,numbpics)
%
% readpbcseq reads numbpics images of the binaural-chip
% output from the file given by FID
%
% See also bin2gif, FOPEN.
%
% J.A. Osuna, 27.12.1994

%--------------------------------------------------------------------

% initializations

filters = 128;
bcpixels = filters^2;

%--------------------------------------------------------------------

% function body

A = fread(FID, [bcpixels numbpics], ’int8’);
% binary values stored as 8-bit integers

% end of function "readpbcseq"
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fram2gif.m

function [numbfiles,numbframes] = ...
fram2gif(seqnorm,filename,frames,digs)

%
% [numbfiles,numbframes] = fram2gif(seqnorm,filename,frames,digs)
%
% fram2gif stores all frames of sequence "seqnorm" listed in
% vector "frames" into separate GIF files
%
% - "seqnorm" is the sequence produced by function
% ’binauralchip’
% (normalized values -128 <= seqnorm <= 127)
% - the frames are stored each in a different file
% named ’filename-number.gif’, where "number" is an
% element of vector "frames" (expanded to "digs"
% digits)
%
% numbfiles is the number of stored files, i.e., the
% length of vector "frames"
% numbframes is the number of frames contained in
% the sequence "seqnorm"
%
% uses the function GIFWRITE from the
% image-processing toolbox
%
% See also bin2gif, binauralchip, num2dig, GIFWRITE.
%
% J.A. Osuna, 16.12.1994

%--------------------------------------------------------------------

% constants

G = ((0:255)/255)’; % Green colour (for colour map)
R = flipud(G); % Red
B = zeros(256,1); % Blue

% initializations

[bcpixels,numbframes] = size(seqnorm);

filters = sqrt(bcpixels);

numbfiles = 0;

mycolmap = [R G B];

% function body

seq = 256-(seqnorm+128);

for i=frames
frame = reshape(seq(:,numbfiles+1), filters, filters);

frame = fliplr(frame); % flipping for correct representation
frame = flipud(frame); % within the simulator of CNNs

filenamegif = [filename ’-’ num2dig(i,digs) ’.gif’];
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gifwrite(frame,mycolmap,filenamegif) % function from the
% image-processing toolbox

numbfiles = numbfiles + 1;
end

% end of function "fram2gif"

num2dig.m

function strg = num2dig(integer,digits)
%
% ’strg’ = num2dig(integer,digits)
%
% num2dig converts an "integer" to a string (strg) filling
% the number with zeros to the left to a total
% of "digits" decimal digits
%
% Example:
%
% strg = num2dig(15,3); % produces the string ’015’
%
%
% J.A. Osuna, 23.4.1993, Budapest

%--------------------------------------------------------------------

% initializations

strint = num2str(integer);
lengthint = length(strint); % #digits of "integer"

zeros = ’’;

% function body

for i=1:(digits-lengthint)
zeros = [zeros ’0’];

end

strg = [zeros strint];

% end of function "num2dig"
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A.2 Simulation of CNNs on a Multi-Signal-Pro-
cessor System

CNNs consist of repeated cells which work in parallel and which, to-
gether with the property of local connectivity (see Section 1.1), make them
well suited for integration. Since a fully-programmable CNN chip is not yet
available, the CNNs must be simulated on digital computers. The implement-
ation of the CNN architecture on a parallel computer exploits the parallel
signal-processing capability of CNNs. We use a Single Process Multiple Data
(SPMD) architecture with distributed memory called MUSIC (MUlti Signal
processor system with Intelligent Communication) [54].2 The numerical in-
tegration of the differential equations (1.3) (page 7) which describe the dy-
namical behaviour of the CNN can be processed by the MUSIC to provide a
powerful CNN simulator which allows real-time signal processing.

A.2.1 The MUSIC

The parallel computer MUSIC has a modular architecture (see Figure A.1).
A single Processor Element (PE) consists of a DSP 96002 from Motorola
(60 MFlops), program and data memory and a fast, independent communica-
tion interface; all communication interfaces are connected through a commu-
nication ring. One node with 3 PEs and the node manager fit on a double-
height Eurocard (8.6×9.2 inch). The system can be extended modularly, e.g.,
20 boards (nodes) can be placed in a 19 inch rack resulting in a system with
60 PEs, a peak performance of 3.6 GFlops, and an electrical power consump-
tion of less than 800 Watts (including forced air cooling) [55].

To estimate the performance of MUSIC, the following equation can be
given [56] to compute the speed-up factor s(n) of an n-processor system, i.e.,
for n PEs:

s(n) =
te + to

te + to
n + tc + n · tsu

(A.1)

2The MUSIC has been developed at the Electronics Laboratory (IfE) of the Swiss Federal
Institute of Technology, ETH, in Zurich.
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Figure A.1: Architecture of the MUSIC

te : time needed to process the program overhead
to : computation time required without parallel processing
tc : communication time for the produced data
tsu : sequential setup time for the communication of a data block

Assuming te + to ≈ to, equation (A.1) can be modified as follows:

s(n) =
1

n ·d + 1
n + 1

c + e
(A.2)
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d = tsu/to : ratio of the sequential setup time to the computing time
using only one PE

c = to/tc : complexity factor
e = te/to : serial factor

The function s(n) given in (A.2) is shown in Figure A.2 for typical constant
values d, e and c.3 As can be seen from Figure 1.2, the speed-up reaches its

Figure A.2: Speed-up factor given in (A.2) with d = 7 · 10−3, e = 10−5 and
c = 10

maximum smax at a certain number no of PEs. The results are given in the next
equations:

no = 1/
√

d (A.3a)

smax = s(
1√
d

) =
1

2
√

d + 1
c + e

(A.3b)

A.2.2 CNNs on MUSIC

The MUSIC is a general purpose parallel computer and was not designed
to implement the CNN architecture in an optimal way as, e.g., in terms of

3The values of d, e and c have to be estimated from the program code which implements the
specific application on MUSIC.
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speed. Nevertheless, it has been shown from simulations that for larger CNNs,
i.e. for M,N� 1, the parallel processing works in an ideal manner: the speed-
up factor equals the number of processors, or, mathematically, s(n)≈ n. Thus,
for M,N � 1, the constants d, e and c in (A.2) take on the following values:
d,e≈ 0, c→ ∞.

The partitioning of the M×N CNN in n regions of (approximately) the
same size occurs along the longer side. Without loss of generality, we can sup-
pose that M≥N. Then, a single PE has to integrate M

n ·N nonlinear differential
equations and needs to communicate only the first and the last row4 of cells
with its upper and lower neighbours, respectively. Moreover, the communica-
tion of these 2 ·N output values is managed by the communication interface of
the PE independently of the DSP. Thus, the data can be interchanged during
the computation of the remaining cell outputs in the inner part of the assigned
region.

A.2.3 Iteration speed

The numerical integration of a 512×512 CNN with non-zero feedback and
control templates5 using Eulers’ method with step length h = 0.01 [57, p. 1063]
takes 25.9 seconds6 on a 31-processor system7 for the integration interval of
0 . . .10.8 This translates to an iteration time of 0.1µs/cell/iteration.

A.2.4 CNNs in the NeuroBasic simulation environment

It is not the purpose of this section to give an introduction to the Neuro-
Basic simulation environment. Instead, we will reproduce on the next page
the announcement of the simulator for CNNs which we developed in collabor-
ation with the Electronics Laboratory (IfE) [58], and which we made public as
free software on 7 December 1994. The simulator, together with its manual,

4For a neighbourhood radius r = 1
5Edge extraction, see Table 6.3 on page 88
6With C-program code
7Ten processor boards, each containing three PEs, plus one video board for additional on-line

representation of the computed data on a monitor. With the on-line representation switched on
and displaying the resulting 512× 512 picture after each iteration, the integration time for the
same task increases to 89.8 seconds, i.e., for 512×512 pictures, on-line displaying is possible at
a rate of 11 images/s.

8The step length h and the integration interval are normalized time values.
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useful utilities and several example programs, can be fetched by anonymous
ftp from the server ife.ethz.ch at IfE.
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Simulator of Cellular Neural Networks Announcement Dec 7, 1994 Os
-------------------------------------

You can retrieve from

anonymous ftp://ife.ethz.ch/pub/NeuroBasic

free copies of our simulator for Cellular Neural Networks (CNNs). In
subdirectory cnn/ you will find versions for the following platforms:

sun/ Sun-4 workstations
hp/ HP7000 series workstations
linux/ Linux PCs
msdos/ MS-DOS PCs

A manual in PostScript format which describes the use and the
functionality of the simulator is included in every subdirectory. You
will also find several useful readme files and many example programs.

Features of CNN-simulator
-------------------------

Originally, the program was written for the parallel supercomputer MUSIC.
But the simulator also runs with *full* functionality on the platforms
given above. The simulator is u n i v e r s a l in the following sense:

- simulation of multilayer CNNs
- definition of your own nonlinear templates
- delayed templates
- you can choose from several numerical-integration algorithms

The simulator can be controlled by an easy-to-use Basic syntax
interactively from a shell, or from a loadable program. You have several
display options on multitasking operating systems:

- animation of image sequences with the program animate from the
ImageMagick package

- display of images at the input/state/output of the CNN for all
layers with the program xv

Within the same simulation environment which we call NeuroBasic V2.0, you
may make use of functions to simulate (conventional) neural networks:
Perceptrons and Convolutional Nets. The subdirectory all/ contains all
available packages of the NeuroBasic environment.

There are no memory limitations other than the physical ones of your
computer. The code was written in ANSI-C and compiled with the GNU-C
compiler.

For further information or problem reports, please contact

J.A. Osuna
ISI e-mail: osuna@isi.ee.ethz.ch
ETH-Zentrum phone: +41 1 63 23620
CH-8092 Zurich fax: +41 1 63 21208
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2D-transformation, see binaural chip
correlation

acoustical alarm signals, 55, 65, 122n
segmentation, 84
test set, 124
training set, 123

back-propagation algorithm, 85, 118
basilar membrane, 58–60
bilinear transformation, 59, 152
binaural chip, 58–62

correlation, 60–62
model, 62–64, 142–152

parameter settings, 127
output images, 64–69

biquad, see filter biquad

CCD, 35
CD-quality, 122
cell

dynamics, 6–9
neighbourhood, 5

cellular automata, 4
characteristic image, 56, 86, 112
classification, 54, 112, 134

error rates, 129, 135–137
people, 122

performance, 137–138
classification device, 55, 56, 115–119
CNN

basic structure, 4–9, 12

binary input, 19
biquad, see filter biquad
chip

programmable, 5
tolerances, 26

convergence time, 4, 12n, 35n
design, 18–21

analytic method, 18, 29, 31n
combinations, see desired &

forbidden combinations
discrete-time, 5n
dynamics, 19
learning, see CNN training
mapping device, 4
multilayer, 5n
parameters, see template
reciprocal, 12n, 19, 32
separating capability, 38, 46

lower bound, 45, 49
upper bound, 48, 49

simulator, 159–161
iteration speed, 160
NeuroBasic, 118, 160
video board, 160n

training, 18
universal machine, 5, 85n

connected component detection, see
CCD

delay line, see filter cascade
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desired & forbidden combinations,
20, 24, 28, 31, 33

edge extraction, 12, 21–25

filter
band-pass, 77–78
biquad, 70, 78–80

capacitance spread, 80
high-pass, 80
low-pass, 59, 72–77

filter cascade, 58–60
forbidden combinations, see desired

& forbidden combinations

general position, 41
generalization, 113
GIF images, 142, 152–156

hearing aids, 54
HMM, 137
hole filling, 35
Hopfield network, 5
horizontal line detection, 26–28

image sequence, 54, see binaural chip
output images

local connectivity, 6

MATLAB, 142
µ-law encoded, 55, 143
MUSIC, 118, 157–159

neuron, 115

one-layer perceptron, 56, 115–119
learning, see back-propagation

algorithm
OR-operation, see time–to–space

mapping

parallel computer, see MUSIC
parameter assumption, see positive

feedback
perceptron, see one-layer perceptron
positive feedback, 12n, 20
propagation-type application, see

shadowing, hole filling,
CCD

relaxation method, 18
results, see classification error rates

sensitivity, 25–26, 50
shadowing, 29–34
SVD, 115
symmetry condition, see CNN recip-

rocal

template
A, 8, 20

asymmetrical, 29
B, 8
cloning, 8n
control, see template B
delay-type, 85n
edge extraction, 13, 25, 88
extreme, 87
feedback, see template A
gradient, 95
horizontal line detection, 28
library, 5, 85
linear, 7
noise removal, 88
nonlinear, 5, 70n, 72, 87, 95
shadowing, 29
space variant, 8n
speed detection, 97
square, 102

template vector ΘΘΘ, 19–21, 34n
threshold, 61, 127
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time–to–space mapping, 55, 56, 84,
86, 92

VCCS, 6
VCVS, 6
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